DRL-ISP: Multi-Objective Camera ISP with Deep Reinforcement Learning

被引:1
|
作者
Shin, Ukcheol [1 ]
Lee, Kyunghyun [1 ]
Kweon, In So [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
关键词
D O I
10.1109/IROS47612.2022.9981361
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a multi-objective camera ISP framework that utilizes Deep Reinforcement Learning (DRL) and camera ISP toolbox that consist of network-based and conventional ISP tools. The proposed DRL-based camera ISP framework iteratively selects a proper tool from the toolbox and applies it to the image to maximize a given vision task-specific reward function. For this purpose, we implement total 51 ISP tools that include exposure correction, color-and-tone correction, white balance, sharpening, denoising, and the others. We also propose an efficient DRL network architecture that can extract the various aspects of an image and make a rigid mapping relationship between images and a large number of actions. Our proposed DRL-based ISP framework effectively improves the image quality according to each vision task such as RAW-to-RGB image restoration, 2D object detection, and monocular depth estimation.
引用
收藏
页码:7044 / 7051
页数:8
相关论文
共 50 条
  • [1] Modeling Camera ISP Pipeline with Deep Learning
    Erbas, Koray Ugur
    Celebi, Aysun Tasyapi
    [J]. 2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [2] A multi-objective deep reinforcement learning framework
    Thanh Thi Nguyen
    Ngoc Duy Nguyen
    Vamplew, Peter
    Nahavandi, Saeid
    Dazeley, Richard
    Lim, Chee Peng
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 96
  • [3] Replacing Mobile Camera ISP with a Single Deep Learning Model
    Ignatov, Andrey
    Van Gool, Luc
    Timofte, Radu
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 2275 - 2285
  • [4] Dynamic Weights in Multi-Objective Deep Reinforcement Learning
    Abels, Axel
    Roijers, Diederik M.
    Lenaerts, Tom
    Nowe, Ann
    Steckelmacher, Denis
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [5] Urban Driving with Multi-Objective Deep Reinforcement Learning
    Li, Changjian
    Czarnecki, Krzysztof
    [J]. AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 359 - 367
  • [6] Multi-objective safe reinforcement learning: the relationship between multi-objective reinforcement learning and safe reinforcement learning
    Horie, Naoto
    Matsui, Tohgoroh
    Moriyama, Koichi
    Mutoh, Atsuko
    Inuzuka, Nobuhiro
    [J]. ARTIFICIAL LIFE AND ROBOTICS, 2019, 24 (03) : 352 - 359
  • [7] Multi-objective safe reinforcement learning: the relationship between multi-objective reinforcement learning and safe reinforcement learning
    Naoto Horie
    Tohgoroh Matsui
    Koichi Moriyama
    Atsuko Mutoh
    Nobuhiro Inuzuka
    [J]. Artificial Life and Robotics, 2019, 24 : 352 - 359
  • [8] Multi-objective path planning based on deep reinforcement learning
    Xu, Jian
    Huang, Fei
    Cui, Yunfei
    Du, Xue
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3273 - 3279
  • [9] Modular Multi-Objective Deep Reinforcement Learning with Decision Values
    Tajmajer, Tomasz
    [J]. PROCEEDINGS OF THE 2018 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2018, : 85 - 93
  • [10] Deep reinforcement learning for multi-objective game strategy selection
    Jiang, Ruhao
    Deng, Yanchen
    Chen, Yingying
    Luo, He
    An, Bo
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2024, 168