The space of intervals in a Euclidean space

被引:0
|
作者
Okuyama, Shingo [1 ]
机构
[1] Takuma Natl Coll Technol, Kagawa 7691192, Japan
来源
关键词
configuration space; partial abelian monoid; iterated loop space; space of intervals;
D O I
10.2140/agt.2005.5.1555
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a path-connected space X, a well-known theorem of Segal, May and Milgram asserts that the configuration space of finite points in R-n with labels in X is weakly homotopy equivalent to Omega(n)Sigma X-n. In this paper, we introduce a space I-n(X) of intervals suitably topologized in R-n with labels in a space X and show that it is weakly homotopy equivalent to Omega(n)Sigma X-n without the assumption on path-connectivity.
引用
收藏
页码:1555 / 1572
页数:18
相关论文
共 50 条