Existence of periodic solutions and their asymptotic stability to the Navier-Stokes equations with the Coriolis force

被引:7
|
作者
Kozono, Hideo [1 ]
Mashiko, Yuki [2 ]
Takada, Ryo [2 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Dept Math, Tokyo 1698555, Japan
[2] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
REPRODUCTIVE PROPERTY; REGULARITY; EULER; FLOWS;
D O I
10.1007/s00028-014-0228-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the time-periodic problem for the Navier-Stokes equations in the rotational framework. We prove the unique existence of time-periodic solutions for the prescribed external force. Furthermore, we also show the asymptotic stability of small time-periodic solutions provided the initial disturbance is sufficiently small.
引用
收藏
页码:565 / 601
页数:37
相关论文
共 50 条
  • [1] Existence of periodic solutions and their asymptotic stability to the Navier–Stokes equations with the Coriolis force
    Hideo Kozono
    Yuki Mashiko
    Ryo Takada
    [J]. Journal of Evolution Equations, 2014, 14 : 565 - 601
  • [2] Existence of periodic solutions of the Navier-Stokes equations
    Kato, H
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (01) : 141 - 157
  • [3] On time periodic solutions, asymptotic stability and bifurcations of Navier-Stokes equations
    Hsia, Chun-Hsiung
    Jung, Chang-Yeol
    Thien Binh Nguyen
    Shiue, Ming-Cheng
    [J]. NUMERISCHE MATHEMATIK, 2017, 135 (02) : 607 - 638
  • [4] On time periodic solutions, asymptotic stability and bifurcations of Navier-Stokes equations
    Chun-Hsiung Hsia
    Chang-Yeol Jung
    Thien Binh Nguyen
    Ming-Cheng Shiue
    [J]. Numerische Mathematik, 2017, 135 : 607 - 638
  • [5] A remark on the Navier-Stokes equations with the Coriolis force
    Zhao, Hengjun
    Wang, Yinxia
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7323 - 7332
  • [6] Solutions of Navier-Stokes Equation with Coriolis Force
    Lee, Sunggeun
    Ryi, Shin-Kun
    Lim, Hankwon
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [7] Asymptotic stability for the Navier-Stokes equations
    Fan, Jishan
    Ozawa, Tohru
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (02) : 379 - 389
  • [8] Asymptotic stability for the Navier-Stokes equations
    Jishan Fan
    Tohru Ozawa
    [J]. Journal of Evolution Equations, 2008, 8 : 379 - 389
  • [9] EXISTENCE AND STABILITY OF TIME-PERIODIC SOLUTIONS TO THE NAVIER-STOKES EQUATIONS IN THE WHOLE SPACE
    MAREMONTI, P
    [J]. NONLINEARITY, 1991, 4 (02) : 503 - 529
  • [10] PERIODIC SOLUTIONS AND THEIR STABILITY TO THE NAVIER-STOKES EQUATIONS ON A HALF SPACE
    Hieber, Matthias
    Nguyen, Thieu Huy
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (5-6): : 1899 - 1910