We explored the impact of heavy PM2.5 pollution events on the health of residents in 250 counties in China. A timeseries approach involving a two-stage analysis was applied to estimate the association between heavy PM2.5 pollution events and mortality from 2013 to 2018. The associations between heavy (PM2.5 >75 mu g/m3 and <150 mu g/m3) and extremely heavy (PM2.5 >150 mu g/m3) PM2.5 pollution days with mortality were explored. The added effects of the heavy PM2.5 pollution events were evaluated by controlling PM2.5 concentration in the model. From 2013 to 2018, there were 57,279 county days of heavy PM2.5 pollution and 21,248 county days of extremely heavy PM2.5 pollution. The risks of mortality during this period of heavy PM2.5 pollution events increased by 1.22% (95% CI: 0.82-1.63%), 1.14% (95% CI: 0.74-1.53%), 1.09% (95% CI: 0.58-1.60%), and 1.30% (95% CI: 0.40-2.20%), for all-cause, nonaccidental, circulatory, and respiratory mortality, respectively. We also observed that heavy PM2.5 pollution events had an added effect on mortality risk associated with all-cause, nonaccidental, circulatory, and respiratory mortality, evident from an observed increase by 0.77% (95% CI: 0.29-1.24%), 0.73% (95% CI: 0.27-1.19%), 0.96% (95% CI: 0.37-1.55%), and 0.55% (95% CI: -0.52-1.63%), respectively. Heavy PM2.5 pollution events increased mortality risks and caused an independent added effect. The findings serve as a foundation for policymakers in developing early warning systems and policy interventions.