Large eddy simulation of dispersion around an isolated cubic building: evaluation of localized dynamic kSGS-equation sub-grid scale model

被引:0
|
作者
Bazdidi-Tehrani, Farzad [1 ]
Jadidi, Mohammad [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Mech Engn, Tehran 1684613114, Iran
关键词
Large eddy simulation; Sub-grid scale models; Localized dynamic k(SGS)-equation model; Dispersion; POLLUTANT DISPERSION; NUMERICAL-SIMULATION; WIND FLOW; CFD; ENVIRONMENT; PERFORMANCE; QUALITY; RANS;
D O I
10.1007/s10652-013-9316-1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the present study, the prediction accuracy of a dynamic one-equation sub-grid scale model for the large eddy simulation of dispersion around an isolated cubic building is investigated. For this purpose, the localized dynamic kSGS-equation model (LDKM) is employed and the results are compared with the available experimental data and two other classic sub-grid scale models, namely, standard Smagorinsky-Lilly model (SSLM) and dynamic Smagorinsky-Lilly model (DSLM). It is shown that the three SGS models give results in good agreement with experiment. However, near the ground level of the leeward wall, dimensionless time-averaged concentration, < K >, profile is not quite similar to the experimental data. It is also demonstrated that the LDKM predicts the values of < K > on the roof, leeward and side walls more acceptably than the SSLM and DSLM. Whereas, the streamwise elongation of time-averaged structures of the plume shape ismore over-estimated with the LDKM than with the other two SGS models. In terms of numerical difficulty, the LDKM is found to be stable and computationally reasonable. In addition, it does not suffer from a flow dependent constant such as the Smagorinsky coefficient employed in the SSLM model.
引用
收藏
页码:565 / 589
页数:25
相关论文
共 50 条