Non-anomalous diffusion is not always Gaussian

被引:15
|
作者
Forte, Giuseppe [1 ]
Cecconi, Fabio [2 ]
Vulpiani, Angelo [1 ,2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] UOS Sapienza, CNR, ISC, I-00185 Rome, Italy
来源
EUROPEAN PHYSICAL JOURNAL B | 2014年 / 87卷 / 05期
关键词
RANDOM-WALKS; MOTION; MODELS; DYNAMICS;
D O I
10.1140/epjb/e2014-40956-0
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Through the analysis of unbiased random walks on fractal trees and continuous time random walks, we show that even if a process is characterized by a mean square displacement (MSD) growing linearly with time (standard behaviour) its diffusion properties can be not trivial. In particular, we show that the following scenarios are consistent with a linear increase of MSD with time: (i) the high-order moments, <x(t)(q)> for q > 2 and the probability density of the process exhibit multiscaling; (ii) the random walk on certain fractal graphs, with non integer spectral dimension, can display a fully standard diffusion; (iii) positive order moments satisfying standard scaling does not imply an exact scaling property of the probability density.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Non-anomalous diffusion is not always Gaussian
    Giuseppe Forte
    Fabio Cecconi
    Angelo Vulpiani
    The European Physical Journal B, 2014, 87
  • [2] NON-ANOMALOUS NATURE OF ANOMALOUS UTTERANCES
    FROMKIN, VA
    LANGUAGE, 1971, 47 (01) : 27 - 52
  • [3] Non-anomalous generalized chiral Schwinger model
    Dutra, AD
    MODERN PHYSICS LETTERS A, 1997, 12 (17) : 1235 - 1240
  • [4] Anomaly induced transport in non-anomalous currents
    Megias, Eugenio
    5TH INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS, 2017, 164
  • [5] Semantic combinatorial processing of non-anomalous expressions
    Molinaro, Nicola
    Carreiras, Manuel
    Andoni Dunabeitia, Jon
    NEUROIMAGE, 2012, 59 (04) : 3488 - 3501
  • [6] HAMILTONIAN QUANTIZATION OF THE NON-ANOMALOUS GENERALIZED SCHWINGER MODEL
    DUTRA, AD
    NATIVIDADE, CP
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1995, 66 (03): : 517 - 522
  • [7] Non-Gaussian anomalous diffusion of optical vortices
    Gong, Jiaxing
    Li, Qi
    Zeng, Shaoqun
    Wang, Jing
    PHYSICAL REVIEW E, 2024, 109 (02)
  • [8] Weakly anomalous diffusion with non-Gaussian propagators
    Cressoni, J. C.
    Viswanathan, G. M.
    Ferreira, A. S.
    da Silva, M. A. A.
    PHYSICAL REVIEW E, 2012, 86 (02):
  • [9] Anomalous and non-Gaussian diffusion in Hertzian spheres
    Ouyang, Wenze
    Sun, Bin
    Sun, Zhiwei
    Xu, Shenghua
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 505 : 61 - 68