Estimating the quality of care in hospitals using instrumental variables

被引:100
|
作者
Gowrisankaran, G
Town, RJ
机构
[1] Univ Minnesota, Dept Econ, Minneapolis, MN 55455 USA
[2] Univ Calif Irvine, Grad Sch Management, Irvine, CA USA
关键词
mortality; quality; hospital; instrumental variables;
D O I
10.1016/S0167-6296(99)00022-3
中图分类号
F [经济];
学科分类号
02 ;
摘要
Mortality rates are a widely used measure of hospital quality. A central problem with this measure is selection bias: simply put, severely ill patients may choose high quality hospitals. We control for severity of illness with an instrumental variables (IV) framework using geographic location data. We use IV to examine the quality of pneumonia care in Southern California from 1989 to 1994. We find that the IV quality estimates are markedly different from traditional GLS estimates, and that IV reveals different determinants of quality. Econometric tests suggest that the IV model is appropriately specified, that the GLS model is inconsistent, (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:747 / 767
页数:21
相关论文
共 50 条
  • [1] Association of Structural Variables with Quality of Care in German Hospitals
    Vorbeck, Lisa
    Naumoska, Dijana
    Geraedts, Max
    [J]. GESUNDHEITSWESEN, 2022, 84 (03) : 242 - 249
  • [2] The Impact of Dementia Special Care Units on Quality of Care: An Instrumental Variables Analysis
    Joyce, Nina R.
    McGuire, Thomas G.
    Bartels, Stephen J.
    Mitchell, Susan L.
    Grabowski, David C.
    [J]. HEALTH SERVICES RESEARCH, 2018, 53 (05) : 3657 - 3679
  • [3] Estimating Peer Effects in Longitudinal Dyadic Data Using Instrumental Variables
    O'Malley, A. James
    Elwert, Felix
    Rosenquist, J. Niels
    Zaslavsky, Alan M.
    Christakis, Nicholas A.
    [J]. BIOMETRICS, 2014, 70 (03) : 506 - 515
  • [4] Estimating the effect of elite communications on public opinion using instrumental variables
    Gabel, Matthew
    Scheve, Kenneth
    [J]. AMERICAN JOURNAL OF POLITICAL SCIENCE, 2007, 51 (04) : 1013 - 1028
  • [5] Estimating Decision-Relevant Comparative Effects Using Instrumental Variables
    Basu A.
    [J]. Statistics in Biosciences, 2011, 3 (1) : 6 - 27
  • [6] Estimating causal effects with hidden confounding using instrumental variables and environments
    Long, James P.
    Zhu, Hongxu
    Do, Kim-Anh
    Ha, Min Jin
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 2849 - 2879
  • [7] ESTIMATING BIVARIATE ERRORS-IN-VARIABLES MODELS WITH INSTRUMENTAL VARIABLES
    CLAPP, JM
    DEY, DK
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1993, 22 (03) : 863 - 876
  • [8] Estimating the Impacts of Program Benefits: Using Instrumental Variables with Underreported and Imputed Data
    Stephens, Melvin, Jr.
    Unayama, Takashi
    [J]. REVIEW OF ECONOMICS AND STATISTICS, 2019, 101 (03) : 468 - 475
  • [9] Estimating Effects of Wages on Smoking Prevalence Using Labor Unions as Instrumental Variables
    Leigh, J. Paul
    Chakalov, Bozhidar T.
    [J]. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2023, 65 (04) : E234 - E239
  • [10] A quantile regression approach for estimating panel data models using instrumental variables
    Harding, Matthew
    Lamarche, Carlos
    [J]. ECONOMICS LETTERS, 2009, 104 (03) : 133 - 135