Three-dimensional micropatterning of semiconducting polymers via capillary force-assisted evaporative self-assembly

被引:10
|
作者
Shin, Jae In [1 ]
Cho, Su Jung [1 ]
Jeon, Jisoo [1 ]
Lee, Kwang Hee [1 ]
Wie, Jeong Jae [1 ,2 ]
机构
[1] Inha Univ, Dept Polymer Sci & Engn, Incheon 22212, South Korea
[2] Inha Univ, WCSL, Incheon 22212, South Korea
基金
新加坡国家研究基金会;
关键词
FIELD-EFFECT MOBILITY; CONJUGATED POLYMER; PATTERN-FORMATION; BLOCK-COPOLYMERS; MOLECULAR-WEIGHT; POLYTHIOPHENE; FLOW; DEPENDENCE; NANORODS; RINGS;
D O I
10.1039/c9sm00478e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Controlled evaporative self-assembly of semiconducting polymers has mostly been studied on 2-dimensional flat substrates. In this study, we reported capillary-assisted evaporative self-assembly of poly(3-hexylthiophene 2,5-diyl) (P3HT) into 3-D micro-ring patterns through the stick-slip phenomenon within a 3-dimensional cylinder. We deconvoluted the well-known two-step stick-slip phenomenon into three regimes through in situ monitoring of the P3HT self-assembly process using a high-speed camera: pinning and deposition; depinning and slip; and retraction regimes. Furthermore, we investigated the effects of various parameters associated with the self-assembly, including polymer concentration, tilt angle, magnetic field, and evaporation temperature, thus achieving self-assembled microarchitectures with diverse dimensions ranging from dots to lines and networks. The self-assembled microstructures were analyzed qualitatively and quantitatively by evaluating the fast Fourier transform image, surface coverage, fractal dimension and lacunarity of the micropatterns.
引用
收藏
页码:3854 / 3863
页数:10
相关论文
共 50 条
  • [1] Three-dimensional mesoscale self-assembly
    Huck, WTS
    Tien, J
    Whitesides, GM
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (32) : 8267 - 8268
  • [2] Self-Assembly of Three-Dimensional Nanostructured Antimony
    Liu, Peng
    Zhong, Kuan
    Liang, Chaolun
    Yang, Qiqin
    Tong, Yexiang
    Li, Gaoren
    Hope, Greg A.
    CHEMISTRY OF MATERIALS, 2008, 20 (24) : 7532 - 7538
  • [3] Demonstration of three-dimensional microstructure self-assembly
    Green, P.W., 1600, IEEE, Piscataway, NJ, United States (04):
  • [4] Self-assembly of droplets in three-dimensional microchannels
    Parthiban, Pravien
    Doyle, Patrick S.
    Hashimoto, Michinao
    SOFT MATTER, 2019, 15 (21) : 4244 - 4254
  • [5] Coordinated Three-Dimensional Robotic Self-Assembly
    Kelly, Jonathan
    Zhang, Hong
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-4, 2009, : 172 - +
  • [6] Three-dimensional self-assembly by ice crystallization
    Im, SH
    Park, OO
    APPLIED PHYSICS LETTERS, 2002, 80 (22) : 4133 - 4135
  • [7] Demonstration of three-dimensional microstructure self-assembly
    Green, PW
    Syms, RRA
    Yeatman, EM
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1995, 4 (04) : 170 - 176
  • [8] SELF-ASSEMBLY OF THREE-DIMENSIONAL NANOPOROUS CONTAINERS
    Wang, Jaihai
    Patel, Mira
    Gracias, David H.
    NANO, 2009, 4 (01) : 1 - 5
  • [9] Surfactant-Free Synthesis of Three-Dimensional Metallic Nanonetworks via Nanobubble-Assisted Self-Assembly
    Li, Jun
    Liang, Xiaosi
    Cai, Liying
    Zhao, Chenyang
    LANGMUIR, 2021, 37 (27) : 8323 - 8330