共 5 条
Short Proline-Rich Antimicrobial Peptides Inhibit Either the Bacterial 70S Ribosome or the Assembly of its Large 50S Subunit
被引:79
|作者:
Krizsan, Andor
[1
]
Prahl, Caroline
[1
]
Goldbach, Tina
[1
]
Knappe, Daniel
[1
]
Hoffmann, Ralf
[1
]
机构:
[1] Univ Leipzig, Inst Bioanalyt Chem, Ctr Biotechnol & Biomed BBZ, D-04103 Leipzig, Germany
来源:
关键词:
antibiotics;
apidaecin;
Gram-negative bacteria;
oncocin;
peptides;
protein translation;
ESCHERICHIA-COLI RIBOSOMES;
GRAM-NEGATIVE PATHOGENS;
PROTEIN-SYNTHESIS;
ANTIBACTERIAL PEPTIDE;
ANTIBIOTICS;
BINDING;
TRANSLATION;
INFECTIONS;
ONCOCIN;
INSECT;
D O I:
10.1002/cbic.201500375
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Short proline-rich antimicrobial peptides (PrAMPs) are a promising class of antibiotics that use novel mechanisms, thus offering the potential to overcome the health threat of multiresistant pathogens. The peptides bind to the bacterial 70S ribosome and can inhibit protein translation. We report that PrAMPs can be divided into two classes, with each class binding to a different site, and thus use different lethal mechanisms. Oncocin-type peptides inhibit protein translation in Escherichia coli by binding to the exit tunnel of the 70S ribosome with half maximal inhibitory concentrations (IC50 values) of around 2 to 6molL(-1), whereas apidaecin-type peptides block the assembly of the large (50S) subunit of the ribosome, resulting in similar IC50 values. The revealed mechanisms should allow the design of new antibiotics to overcome current bacterial resistance mechanisms.
引用
收藏
页码:2304 / 2308
页数:5
相关论文