A study of the quasi covering dimension of finite lattices

被引:1
|
作者
Boyadzhiev, D. [1 ]
Georgiou, D. [2 ]
Megaritis, A. [3 ]
Sereti, F. [2 ]
机构
[1] Paisij Hilendarski Univ Plovdiv, Fac Math & Informat, Dept Appl Math & Modeling, Plovdiv, Bulgaria
[2] Univ Patras, Dept Math, Patras 26500, Greece
[3] Technol Educ Inst Peloponnese, Dept Comp Engn, Sparta 23100, Greece
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2019年 / 38卷 / 03期
关键词
Quasi covering dimension; Quasi cover; Finite lattice; Dense element; Matrix theory;
D O I
10.1007/s40314-019-0885-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of dimension for posets has been studied extensively (see, for example, Bae in J Korean Math Soc 36(1):15-36, 1999, Dube et al. in Discr Math 338:1096-1110, 2015, Gierz et al. in A compendium of continuous lattices. Springer, Berlin, 1980, Trotter in Combinatorics and partially ordered sets: dimension theory. Johns Hopkins University Press, Baltimore, 1992, Vinokurov in Soviet Math Dokl 168(3):663-666, 1966, Zhang et al. in Discr Math 340(5):1086-1091, 2017). Moreover, in the view of matrix theory, some of these dimensions, such as the order dimension, the Krull dimension and the covering dimension, have been studied using the so-called order and incidence matrices (see Boyadzhiev et al. in Appl Math Comput 333:276-285, 2018, Dube et al. in Filomat 31(10):2901-2915, 2017, Georgiou et al. in Quaest Math 39(6):797-814, 2016). In this paper, we define a new dimension for finite lattices, called the quasi covering dimension, and we study many of its properties. We characterize it using matrices and we present an algorithm for computing this dimension.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A study of the quasi covering dimension of finite lattices
    D. Boyadzhiev
    D. Georgiou
    A. Megaritis
    F. Sereti
    [J]. Computational and Applied Mathematics, 2019, 38
  • [2] A study of a covering dimension of finite lattices
    Boyadzhiev, D.
    Georgiou, D. N.
    Megaritis, A. C.
    Sereti, F.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 333 : 276 - 285
  • [3] A study of covering dimension for the class of finite lattices
    Dube, Themba
    Georgiou, Dimitris N.
    Megaritis, Athanasios C.
    Moshokoa, Seithuti P.
    [J]. DISCRETE MATHEMATICS, 2015, 338 (07) : 1096 - 1110
  • [4] A study of the quasi covering dimension for finite spaces through the matrix theory
    Georgiou, D. N.
    Megaritis, A. C.
    Sereti, F.
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (01): : 111 - 125
  • [5] Answer to some open questions on covering dimension for finite lattices
    Zhang, Hai-feng
    Zhou, Meng
    Zhang, Guang-jun
    [J]. DISCRETE MATHEMATICS, 2017, 340 (05) : 1086 - 1091
  • [6] A study of covering dimension for the class of finite lattices (vol 338, pg 1096, 2015)
    Zhang, Hai-feng
    Zhou, Meng
    Zhang, Guang-jun
    [J]. DISCRETE MATHEMATICS, 2016, 339 (06) : 1722 - 1723
  • [7] Covering dimension and finite spaces
    Georgiou, D. N.
    Megaritis, A. C.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (07) : 3122 - 3130
  • [8] A Study of the Small Inductive Dimension in the Area of Finite Lattices
    Georgiou, D.
    Megaritis, A.
    Prinos, G.
    Sereti, F.
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2024, 41 (02): : 437 - 461
  • [9] Covering dimension of finite topological spaces
    Wang, Kaiyun
    Wang, Huixin
    Yang, Xiaofei
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [10] A Study of the Quasi Covering Dimension of Alexandroff Countable Spaces Using Matrices
    Georgiou, D. N.
    Megaritis, A. C.
    Sereti, F.
    [J]. FILOMAT, 2018, 32 (18) : 6327 - 6337