Stability in the theorem of length estimation for a curve of descent

被引:1
|
作者
Mainik, IF
机构
关键词
Break Line; Finite Length; Terminal Point; Support Plane; Dimensional Plane;
D O I
10.1007/BF02674580
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:751 / 758
页数:8
相关论文
共 50 条
  • [1] Stability in the theorem of length estimation for a curve of descent
    I. F. Maînik
    [J]. Siberian Mathematical Journal, 1997, 38 : 751 - 758
  • [2] AN ESTIMATE OF LENGTH FOR THE CURVE OF DESCENT
    MAINIK, IF
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1992, 33 (04) : 739 - 742
  • [3] ON TONELLIS THEOREM CONCERNING CURVE LENGTH
    ISEKI, K
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1961, 37 (NI): : 63 - &
  • [4] ON THE PRECISION OF CURVE LENGTH ESTIMATION IN THE PLANE
    Gomez, Ana I.
    Cruz, Marcos
    Cruz-Orive, Luis M.
    [J]. IMAGE ANALYSIS & STEREOLOGY, 2016, 35 (01): : 1 - 14
  • [5] SPATIAL-DISTRIBUTION OF CURVE LENGTH - CONCEPT AND ESTIMATION
    ROBERTS, N
    CRUZORIVE, LM
    [J]. JOURNAL OF MICROSCOPY, 1993, 172 : 23 - 29
  • [6] CryoEM Skeleton Length Estimation using a Decimated Curve
    McKnight, Andrew
    Al Nasr, Kamal
    Si, Dong
    Chernikov, Andrey
    Chrisochoides, Nikos
    He, Jing
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2012,
  • [7] Arc Length Estimation and the Convergence of Polynomial Curve Interpolation
    M. S. Floater
    [J]. BIT Numerical Mathematics, 2005, 45 : 679 - 694
  • [8] THE JACOBSON DESCENT THEOREM
    WINTER, DJ
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1983, 104 (02) : 495 - 496
  • [9] Arc length estimation and the convergence of polynomial curve interpolation
    Floater, MS
    [J]. BIT NUMERICAL MATHEMATICS, 2005, 45 (04) : 679 - 694
  • [10] Curve Reconstruction, the Traveling Salesman Problem, and Menger's Theorem on Length
    J. Giesen
    [J]. Discrete & Computational Geometry, 2000, 24 : 577 - 603