Network embedding: Taxonomies, frameworks and applications

被引:39
|
作者
Hou, Mingliang [1 ]
Ren, Jing [1 ]
Zhang, Da [2 ]
Kong, Xiangjie [3 ]
Zhang, Dongyu [1 ]
Xia, Feng [4 ]
机构
[1] Dalian Univ Technol, Sch Software, Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian 116620, Peoples R China
[2] Univ Miami, Dept Elect & Comp Engn, 5452 Coral Gables, Coral Gables, FL 33124 USA
[3] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Peoples R China
[4] Federat Univ Australia, Sch Engn IT & Phys Sci, Ballarat, Vic 3353, Australia
基金
中国国家自然科学基金;
关键词
Network science; Network embedding; Heterogeneity; Dynamics; KNOWLEDGE; DIMENSIONALITY; CONSTRUCTION; INFORMATION; DATABASE;
D O I
10.1016/j.cosrev.2020.100296
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Networks are a general language for describing complex systems of interacting entities. In the real world, a network always contains massive nodes, edges and additional complex information which leads to high complexity in computing and analyzing tasks. Network embedding aims at transforming one network into a low dimensional vector space which benefits the downstream network analysis tasks. In this survey, we provide a systematic overview of network embedding techniques in addressing challenges appearing in networks. We first introduce concepts and challenges in network embedding. Afterwards, we categorize network embedding methods using three categories, including static homogeneous network embedding methods, static heterogeneous network embedding methods and dynamic network embedding methods. Next, we summarize the datasets and evaluation tasks commonly used in network embedding. Finally, we discuss several future directions in this field. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Network Embedding:Theories,Methods,and Applications
    杨成
    刘知远
    涂存超
    石川
    孙茂松
    [J]. 中文信息学报, 2022, (03) : 173 - 173
  • [2] Network Embedding: Theories, Methods, and Applications
    Yang C.
    Liu Z.
    Tu C.
    Shi C.
    Sun M.
    [J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2021, 15 (02): : 1 - 242
  • [3] A Unified Semantic Embedding: Relating Taxonomies and Attributes
    Hwang, Sung Ju
    Sigal, Leonid
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [4] The Applications of Stochastic Models in Network Embedding: A Survey
    Lei, Minglong
    Shi, Yong
    Niu, Lingfeng
    [J]. 2018 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2018), 2018, : 635 - 638
  • [5] Plant names and folk taxonomies: Frameworks for ethnosemiotic inquiry
    Herman, David
    Moss, Susan
    [J]. SEMIOTICA, 2007, 167 (1-4) : 1 - 11
  • [6] Containerization technologies: taxonomies, applications and challenges
    Ouafa Bentaleb
    Adam S. Z. Belloum
    Abderrazak Sebaa
    Aouaouche El-Maouhab
    [J]. The Journal of Supercomputing, 2022, 78 : 1144 - 1181
  • [7] Containerization technologies: taxonomies, applications and challenges
    Bentaleb, Ouafa
    Belloum, Adam S. Z.
    Sebaa, Abderrazak
    El-Maouhab, Aouaouche
    [J]. JOURNAL OF SUPERCOMPUTING, 2022, 78 (01): : 1144 - 1181
  • [8] Supervised Taxonomies-Algorithms and Applications
    Amalaman, Paul K.
    Eick, Christoph F.
    Wang, Chong
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (09) : 2040 - 2052
  • [9] Feature Selection in Taxonomies with Applications to Paleontology
    Garriga, Gemma C.
    Ukkonen, Antti
    Mannila, Heikki
    [J]. DISCOVERY SCIENCE, PROCEEDINGS, 2008, 5255 : 112 - 123
  • [10] Preface of special issue on heterogeneous information network embedding and applications
    Li, Weimin
    Liu, Lu
    Wang, Kevin I. K.
    Jin, Qun
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 152 : 331 - 332