Multi-objective design space exploration using genetic algorithms

被引:0
|
作者
Palesi, M [1 ]
Givargis, T [1 ]
机构
[1] Univ Catania, Dip Ing Informat Telecommunicaz, I-95125 Catania, Italy
关键词
Design space exploration; genetic algorithms; low power design; Pareto-optimal configurations; system-on-a-chip architectures;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we provide a technique for efficiently exploring a parameterized system-on-a-chip (SoC) architecture to find all Paretooptimal configurations in a multi-objective design space. Globally, our approach uses a parameter dependency model of our target parameterized SoC architecture to extensively prune non-optimal subspaces. Locally, our approach applies Genetic Algorithms (GAs) to discover Pareto-optimal configurations within the remaining design points. The computed Pareto-optimal configurations will represent the range of performance (e.g., timing and power) tradeoffs that are obtainable by adjusting parameter values for a fixed application that is mapped on the parameterized SoC architecture. We have successfully applied our technique to explore Pareto-optimal configurations for a number of applications mapped on a parameterized SoC architecture.
引用
下载
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [1] Multi-objective design space exploration of road trains with evolutionary algorithms
    Laumanns, N
    Laumanns, M
    Neunzig, D
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 : 612 - 623
  • [2] Exact Multi-Objective Design Space Exploration using ASPmT
    Neubauer, Kai
    Wanko, Philipp
    Schaub, Torsten
    Haubelt, Christian
    PROCEEDINGS OF THE 2018 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2018, : 257 - 260
  • [3] A comparison of multi-objective algorithms for the automatic design space exploration of a superscalar system
    Calborean, Horia
    Jahr, Ralf
    Ungerer, Theo
    Vintan, Lucian
    Calborean, H. (Horia.Calborean@ulbsibiu.ro), 1600, Springer Verlag (187 AISC): : 489 - 502
  • [4] Multi-objective and constrained design of gratings using genetic algorithms
    Poladian, L
    Manos, S
    Ashton, B
    2005 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, 2005, : 552 - 554
  • [5] Multi-objective design space exploration using explainable surrogate models
    Palar, Pramudita Satria
    Dwianto, Yohanes Bimo
    Zuhal, Lavi Rizki
    Morlier, Joseph
    Shimoyama, Koji
    Obayashi, Shigeru
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2024, 67 (03)
  • [6] Space Active Noise Control System Design with Multi-objective Genetic Algorithms
    Liu Huideng
    Qiu ARui
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2186 - 2192
  • [7] Design space exploration with evolutionary multi-objective optimisation
    Holzer, M.
    Kneff, B.
    Rupp, M.
    2007 INTERNATIONAL SYMPOSIUM ON INDUSTRIAL EMBEDDED SYSTEMS, 2007, : 126 - 133
  • [8] Multi-objective design space exploration under uncertainty
    Kheawhom, S
    Kittisupakorn, P
    European Symposium on Computer-Aided Process Engineering-15, 20A and 20B, 2005, 20a-20b : 145 - 150
  • [9] Design space exploration in multi-objective hierarchical SOC design
    Han, Muhua
    Xie, Yufeng
    Liu, Leibo
    Wei, Shaoijun
    ASICON 2007: 2007 7TH INTERNATIONAL CONFERENCE ON ASIC, VOLS 1 AND 2, PROCEEDINGS, 2007, : 118 - 121
  • [10] Sherlock: A Multi-Objective Design Space Exploration Framework
    Gautier, Quentin
    Althoff, Alric
    Crutchfield, Christopher L.
    Kastner, Ryan
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2022, 27 (04)