Inference on stress-strength reliability for exponential distributions with a common scale parameter

被引:6
|
作者
Jana, Nabakumar [1 ]
Kumar, Somesh [2 ]
Chatterjee, Kashinath [3 ]
机构
[1] Indian Inst Technol ISM, Dept Appl Math, Dhanbad, Bihar, India
[2] Indian Inst Technol, Dept Math, Kharagpur, W Bengal, India
[3] Visva Bharati, Dept Stat, Santini Ketan, W Bengal, India
关键词
Bayes estimator; best scale equivariant estimator; generalized pivot variable; maximum likelihood estimator; stress-strength model; uniformly minimum variance unbiased estimator; LESS-THAN; INTERVAL ESTIMATORS; LIMITS;
D O I
10.1080/02664763.2019.1625878
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers estimation of the stress-strength reliability when the stress and strength follow two-parameter exponential distributions having different location parameters and a common scale parameter. All parameters are assumed to be unknown. We derive the uniformly minimum variance unbiased estimator, Bayes estimators and an affine equivariant estimator of the stress-strength reliability. We propose confidence intervals of the stress-strength reliability based on the generalized variable approach and percentile bootstrap method. We also derive an approximate confidence interval and Bayesian intervals of the reliability parameter. Numerical comparisons among the proposed estimators are carried out using intensive simulations. Illustrative examples have been given using real data sets.
引用
收藏
页码:3008 / 3031
页数:24
相关论文
共 50 条
  • [1] Inference on reliability in two-parameter exponential stress-strength model
    Krishnamoorthy, K.
    Mukherjee, Shubhabrata
    Guo, Huizhen
    [J]. METRIKA, 2007, 65 (03) : 261 - 273
  • [2] Inference on Stress-Strength Reliability for Lomax Exponential Distribution
    Pandit, Parameshwar, V
    Kavitha, N.
    [J]. STATISTICS AND APPLICATIONS, 2024, 22 (01): : 231 - 242
  • [3] Estimating stress-strength reliability for exponential distributions with different location and scale parameters
    Nabakumar Jana
    Somesh Kumar
    Kashinath Chatterjee
    Piyali Kundu
    [J]. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2021, 13 : 177 - 190
  • [4] Estimating stress-strength reliability for exponential distributions with different location and scale parameters
    Jana, Nabakumar
    Kumar, Somesh
    Chatterjee, Kashinath
    Kundu, Piyali
    [J]. INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2021, 13 (2-3) : 177 - 190
  • [5] Inference on stress-strength reliability for the two-parameter exponential distribution based on generalized order statistics
    Jafari, Ali Akbar
    Bafekri, Saeede
    [J]. MATHEMATICAL POPULATION STUDIES, 2021, 28 (04) : 201 - 227
  • [6] ESTIMATION OF RELIABILITY IN MULTICOMPONENT STRESS-STRENGTH BASED ON EXPONENTIAL FRECHET DISTRIBUTIONS
    Shang, Li-Feng
    Yan, Zai-Zai
    [J]. THERMAL SCIENCE, 2023, 27 (3A): : 1747 - 1754
  • [7] Estimation of the reliability parameter for a Poisson-exponential stress-strength model
    Barbiero, Alessandro
    [J]. INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (03) : 1261 - 1272
  • [8] Estimation of the reliability parameter for a Poisson-exponential stress-strength model
    Alessandro Barbiero
    [J]. International Journal of System Assurance Engineering and Management, 2024, 15 : 1261 - 1272
  • [9] Robust inference for the stress-strength reliability
    Greco, Luca
    Ventura, Laura
    [J]. STATISTICAL PAPERS, 2011, 52 (04) : 773 - 788
  • [10] Inference for the generalized exponential stress-strength model
    Wang, Bing Xing
    Geng, Yanpeng
    Zhou, Jun Xing
    [J]. APPLIED MATHEMATICAL MODELLING, 2018, 53 : 267 - 275