Egg production curve fitting using least square support vector machines and nonlinear regression analysis

被引:5
|
作者
Gorgulu, O. [1 ]
Akilli, A. [2 ]
机构
[1] Ahi Evran Univ, Dept Biostat & Med Informat, Fac Med, Kirsehir, Turkey
[2] Ahi Evran Univ, Dept Biometry & Genet, Fac Agr, Kirsehir, Turkey
来源
EUROPEAN POULTRY SCIENCE | 2018年 / 82卷
关键词
egg production; last square support vector machine; curve fitting; regression; poultry; NEURAL-NETWORK MODELS; INFRARED-SPECTROSCOPY; PREDICTION; GROWTH;
D O I
10.1399/eps.2018.235
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
It was aimed to model egg production curves using nonlinear regression analysis and least squares support vector machines in this study. The accuracy of the models was calculated using the Akaike information criteria, mean square error, mean absolute percentage error, mean absolute deviation, R-2 and AdjR(2). The data set consisted of egg performance values of laying hens recorded from 20 weeks to 70 weeks of age. The longitudinal data had a nonlinear structure. The results showed that the least squares support vector machines method, which is considered in different parameter combinations, can be used as an alternative to classical methods and predictions have lower errors. The present study shows that least squares support vector machine methods can be used successfully in the modelling of egg production curves in laying hens.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Fuzzy least square support vector machines for regression
    Wu, Qing
    Liu, San-Yang
    Du, Zhe
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2007, 34 (05): : 773 - 778
  • [2] Analysis of detectors for support vector machines and least square support vector machines
    Kuh, A
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1075 - 1079
  • [3] Regression models using pattern search assisted least square support vector machines
    Patil, NS
    Shelokar, PS
    Jayaraman, VK
    Kulkarni, BD
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2005, 83 (A8): : 1030 - 1037
  • [4] Image registration using least square support vector machines
    Peng, DaiQiang
    Liu, Jian
    Tian, JinWen
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 631 - 631
  • [5] Application of adaptive least square support vector machines in nonlinear system identification
    Wang, Xiaodong
    Liang, Weifeng
    Cai, Xiushan
    Lv, Ganyun
    Zhang, Changjiang
    Zhang, Haoran
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 1897 - +
  • [6] Improving the speed of support vector regression using regularized least square regression
    Pirmard S.S.
    Forghani Y.
    Ingenierie des Systemes d'Information, 2020, 25 (04): : 427 - 435
  • [7] Microwave Characterization Using Least-Square Support Vector Machines
    Hacib, Tarik
    Le Bihan, Yann
    Mekideche, Mohamed Rachid
    Acikgoz, Hulusi
    Meyer, Olivier
    Pichon, Lionel
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 2811 - 2814
  • [8] Double weighted least square support vector machines
    Wang, Liguo
    Zhao, ChunHui
    Zhang, Ye
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 1765 - 1769
  • [9] Simple algorithms for least square support vector machines
    Hsu-Kun Wu
    Pao-Jung Chen
    Jer-Guang Hsieh
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 5106 - +
  • [10] Daily discharge forecasting using least square support vector regression and regression tree
    Sahraei, Sh
    Andalani, S. Zare
    Zakermoshfegh, M.
    Sisakht, B. Nikeghbal
    Talebbeydokhti, N.
    Moradkhani, H.
    SCIENTIA IRANICA, 2015, 22 (02) : 410 - 422