Optimal arc spline approximation

被引:12
|
作者
Maier, Georg [1 ]
机构
[1] Univ Passau, FORWISS, D-94032 Passau, Germany
关键词
Approximation; Arc spline; Biarc; SMAP; MINIMUM NUMBER; CIRCULAR ARCS; CURVES; BIARCS;
D O I
10.1016/j.cagd.2014.02.011
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a method for approximating a point sequence of input points by a G(1)-continuous (smooth) arc spline with the minimum number of segments while not exceeding a user-specified tolerance. Arc splines are curves composed of circular arcs and line segments (shortly: segments). For controlling the tolerance we follow a geometric approach: We consider a simple closed polygon P and two disjoint edges designated as the start s and the destination d. Then we compute a SMAP (smooth minimum arc path), i.e. a smooth arc spline running from s to d in P with the minimally possible number of segments. In this paper we focus on the mathematical characterization of possible solutions that enables a constructive approach leading to an efficient algorithm. In contrast to the existing approaches, we do not restrict the breakpoints of the arc spline to a predefined set of points but choose them automatically. This has a considerably positive effect on the resulting number of segments. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:211 / 226
页数:16
相关论文
共 50 条
  • [1] Detecting straight sections and optimal arc spline approximation
    Integration von Strecken in die Kreisbogensplinepassung mit optimaler Segmentzahl
    Maier, G. (gmaier@forwiss.uni-passau.de), 1600, Walter de Gruyter GmbH (80):
  • [2] Detecting Straight Sections and Optimal Arc Spline Approximation
    Maier, Georg
    Schindler, Andreas
    Janda, Florian
    Brummer, Stephan
    TM-TECHNISCHES MESSEN, 2013, 80 (10) : 329 - 334
  • [3] Optimal Arc-Spline Approximation with Detecting Straight Sections
    Maier, Georg
    Schindler, Andreas
    Janda, Florian
    Brummer, Stephan
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2013, PT II, 2013, 7972 : 99 - 112
  • [4] An arc spline approximation to a clothoid
    Meek, DS
    Walton, DJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 170 (01) : 59 - 77
  • [5] Spiral arc spline approximation to a planar spiral
    Meek, DS
    Walton, DJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 107 (01) : 21 - 30
  • [6] SPLINE APPROXIMATION AND OPTIMAL RECOVERY OF OPERATORS
    ZHENSYKBAEV, AA
    RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1995, 80 (02) : 393 - 409
  • [7] OPTIMAL APPROXIMATE CONVERSION OF SPLINE CURVES AND SPLINE APPROXIMATION OF OFFSET CURVES
    HOSCHEK, J
    WISSEL, N
    COMPUTER-AIDED DESIGN, 1988, 20 (08) : 475 - 483
  • [8] Bivariate spline interpolation with optimal approximation order
    O. Davydov
    G. Nürnberger
    F. Zeilfelder
    Constructive Approximation, 2001, 17 : 181 - 208
  • [9] Bivariate spline interpolation with optimal approximation order
    Davydov, O
    Nürnberger, G
    Zeilfelder, F
    CONSTRUCTIVE APPROXIMATION, 2001, 17 (02) : 181 - 208
  • [10] OPTIMAL CHOICE OF KNOTS FOR SPLINE APPROXIMATION OF FUNCTIONS
    LIGUN, AA
    SHUMEIKO, AA
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1984, (06): : 18 - 21