Imputation methods to deal with missing values when data mining trauma injury data

被引:0
|
作者
Penny, Kay I. [1 ]
Chesney, Thomas [2 ]
机构
[1] Napier Univ, Ctr Math & Stat, Craiglockhart Campus, Edinburgh EH14 1DJ, Midlothian, Scotland
[2] Univ Nottingham, Sch Business, Nottingham NG8 1BB, England
关键词
data mining; missing data imputation; trauma injury;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Methods for analysing trauma injury data with missing values, collected at a UK hospital, are reported. One measure of injury severity, the Glasgow coma score, which is known to be associated with patient death, is missing for 12% of patients in the dataset. In order to include these 12% of patients in the analysis, three different data imputation techniques are used to estimate the missing values. The imputed data sets are analysed by an artificial neural network and logistic regression, and their results compared in terms of sensitivity, specificity, positive predictive value and negative predictive value.
引用
收藏
页码:213 / +
页数:3
相关论文
共 50 条
  • [1] Methods for imputation of missing values in air quality data sets
    Junninen, H
    Niska, H
    Tuppurainen, K
    Ruuskanen, J
    Kolehmainen, M
    [J]. ATMOSPHERIC ENVIRONMENT, 2004, 38 (18) : 2895 - 2907
  • [2] Optimization methods for the imputation of missing values in Educational Institutions Data
    Aureli, D.
    Bruni, R.
    Daraio, C.
    [J]. METHODSX, 2021, 8
  • [3] Missing Data and Imputation Methods
    Schober, Patrick
    Vetter, Thomas R.
    [J]. ANESTHESIA AND ANALGESIA, 2020, 131 (05): : 1419 - 1420
  • [4] When Data Goes Missing: Methods for Missing Score Imputation in Biometric Fusion
    Ding, Yaohui
    Ross, Arun
    [J]. BIOMETRIC TECHNOLOGY FOR HUMAN IDENTIFICATION VII, 2010, 7667
  • [5] Impact of Missing Data on Correlation Coefficient Values: Deletion and Imputation Methods for Data Preparation
    Shantal, Mohammed
    Othman, Zalinda
    Abu Bakar, Azuraliza
    [J]. MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2023, 19 (06): : 1052 - 1067
  • [6] A Comparison of Various Imputation Methods for Missing Values in Air Quality Data
    Zainuri, Nuryazmin Ahmat
    Jemain, Abdul Aziz
    Muda, Nora
    [J]. SAINS MALAYSIANA, 2015, 44 (03): : 449 - 456
  • [7] Imputation of missing values for compositional data using classical and robust methods
    Hron, K.
    Templ, M.
    Filzmoser, P.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 3095 - 3107
  • [8] Imputation of continuous missing values in profile data
    Yang, Luo
    Wang, Kaibo
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (07) : 3644 - 3662
  • [9] IMPUTATION WHEN NEARLY HALF THE DATA ARE MISSING
    VANNATTA, P
    CANNER, PL
    [J]. CONTROLLED CLINICAL TRIALS, 1986, 7 (03): : 229 - 229
  • [10] Comparison of missing data imputation methods using weather data
    Nida, Hafiza
    Kashif, Muhammad
    Khan, Muhammad Imran
    Ghamkhar, Madiha
    [J]. PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2023, 60 (02): : 327 - 336