Building interpretable fuzzy systems: a new approach to fuzzy modeling

被引:0
|
作者
Contreras Montes, Juan
Misa Llorca, Roger
Paz Grau, Juan
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
At this article a new methodology is proposed to construct linguistically interpretable fuzzy models from input and output data. The proposed methodology includes clustering techniques to determine rules, the minimum squares method to adjust consequents and, for a sharp tuning, the descendant gradient to adjust the modal values of sets that confirm the antecedent. The antecedent partition uses triangular sets with 0.5 interpolations. The most promissory aspect in our proposal consists in achieving a great precision without sacrificing the fuzzy system interpretability. Some applications are presented to very well-known problems and fuzzy sets and the results are compared with those obtained by other authors using other techniques.
引用
收藏
页码:117 / 122
页数:6
相关论文
共 50 条
  • [1] An EOCA-based Interpretable Fuzzy Modeling Approach
    Wang Na
    Zhang Mu
    Shi Wuxi
    [J]. PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 5101 - 5105
  • [2] A neuro-fuzzy approach to obtain interpretable fuzzy systems for function approximation
    Nauck, D
    Kruse, R
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AT THE IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE - PROCEEDINGS, VOL 1-2, 1998, : 1106 - 1111
  • [3] Interpretable fuzzy models from data and adaptive fuzzy control:: A new approach
    Montes, Juan Contreras
    Llorca, Roger Misa
    Fernandez, Luis Murillo
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1596 - +
  • [4] A new approach to fuzzy modeling
    Kim, E
    Park, M
    Ji, SW
    Park, M
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1997, 5 (03) : 328 - 337
  • [5] The fuzzy crystallization algorithm: A new approach to complex systems modeling
    Cheng, CC
    Hsieh, WH
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (06): : 891 - 901
  • [6] A fuzzy clustering based approach for generating interpretable fuzzy models
    Xing, ZY
    Hu, WL
    Jia, LM
    [J]. PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2093 - 2097
  • [7] Building Interpretable and Parsimonious Fuzzy Models using a Multi-Objective Approach
    Fuchs, Caro
    Kaymak, Uzay
    Nobile, Marco S.
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2022,
  • [8] Designing interpretable Hierarchical Fuzzy Systems
    Magdalena, L.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [9] Special issue on interpretable fuzzy systems
    Alonso, Jose M.
    Magdalena, Luis
    [J]. INFORMATION SCIENCES, 2011, 181 (20) : 4331 - 4339
  • [10] A new TSK fuzzy modeling approach
    Kim, KJ
    Kim, YK
    Kim, E
    Park, M
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 773 - 776