Semantically Secure Lattice Codes for the Gaussian Wiretap Channel

被引:101
|
作者
Ling, Cong [1 ]
Luzzi, Laura [1 ]
Belfiore, Jean-Claude [2 ]
Stehle, Damien [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Telecom ParisTech, Dept Commun & Elect, F-75739 Paris, France
[3] Ecole Normale Super Lyon, Lab Informat Parallelisme, F-69364 Lyon, France
关键词
Lattice coding; information theoretic security; strong secrecy; semantic security; wiretap channel; STRONG SECRECY; COSET CODES; INTERFERENCE; BOUNDS;
D O I
10.1109/TIT.2014.2343226
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new scheme of wiretap lattice coding that achieves semantic security and strong secrecy over the Gaussian wiretap channel. The key tool in our security proof is the flatness factor, which characterizes the convergence of the conditional output distributions corresponding to different messages and leads to an upper bound on the information leakage. We not only introduce the notion of secrecy-good lattices, but also propose the flatness factor as a design criterion of such lattices. Both the modulo-lattice Gaussian channel and genuine Gaussian channel are considered. In the latter case, we propose a novel secrecy coding scheme based on the discrete Gaussian distribution over a lattice, which achieves the secrecy capacity to within a half nat under mild conditions. No a priori distribution of the message is assumed, and no dither is used in our proposed schemes.
引用
收藏
页码:6399 / 6416
页数:18
相关论文
共 50 条
  • [1] Lattice Codes for the Wiretap Gaussian Channel: Construction and Analysis
    Oggier, Frederique
    Sole, Patrick
    Belfiore, Jean-Claude
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (10) : 5690 - 5708
  • [2] Secure Coding for the Gaussian Wiretap Channel with Sparse Regression Codes
    Athanasakos, Manos
    2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2021,
  • [3] LDPC Codes for the Gaussian Wiretap Channel
    Klinc, Demijan
    Ha, Jeongseok
    McLaughlin, Steven W.
    Barros, Joao
    Kwak, Byung-Jae
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2011, 6 (03) : 532 - 540
  • [4] LDPC Codes for the Gaussian Wiretap Channel
    Klinc, Demijan
    Ha, Jeongseok
    McLaughlin, Steven W.
    Barros, Joao
    Kwak, Byung-Jae
    2009 IEEE INFORMATION THEORY WORKSHOP (ITW 2009), 2009, : 95 - 99
  • [5] Channel Upgrading for Semantically-Secure Encryption on Wiretap Channels
    Tal, Ido
    Vardy, Alexander
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 1561 - +
  • [6] Reliable and Secure Regions for the Gaussian Wiretap Channel using LDPC Codes with granular HARQ
    Taieb, Mohamed Haj
    Chouinard, Jean-Yves
    2015 WORLD SYMPOSIUM ON COMPUTER NETWORKS AND INFORMATION SECURITY (WSCNIS), 2015,
  • [7] Semantically Secure Lattice Codes for Compound MIMO Channels
    Campello, Antonio
    Ling, Cong
    Belfiore, Jean-Claude
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (03) : 1572 - 1584
  • [8] On MMSE Properties of Optimal Codes for the Gaussian Wiretap Channel
    Bustin, Ronit
    Schaefer, Rafael F.
    Poor, H. Vincent
    Shamai , Shlomo
    2015 IEEE INFORMATION THEORY WORKSHOP (ITW), 2015,
  • [9] Secure Degrees of Freedom of the Gaussian Wiretap Channel with Helpers
    Xie, Jianwei
    Ulukus, Sennur
    2012 50TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2012, : 193 - 200
  • [10] Gaussian Wiretap Lattice Codes from Binary Self-dual Codes
    Lin, Fuchun
    Oggier, Frederique
    2012 IEEE INFORMATION THEORY WORKSHOP (ITW), 2012, : 662 - 666