Adsorption of Co and Ni on Graphene with a Double Hexagonal Symmetry: Electronic and Magnetic Properties

被引:33
|
作者
Naji, S. [1 ,2 ]
Belhaj, A. [3 ]
Labrim, H. [4 ]
Bhihi, M. [1 ]
Benyoussef, A. [1 ,5 ,6 ]
El Kenz, A. [1 ]
机构
[1] Univ Mohammed V Agdal, LMPHE, URAC 12, Fac Sci, Rabat 10000, Morocco
[2] Ibb Univ, Dept Phys, Fac Sci, Ibb 1120, Yemen
[3] Univ Sultan Moulay Slimane, Fac Polydisciplinaire, Dept Phys, Beni Mellal 23000, Morocco
[4] Ctr Natl Energie Sci & Tech Nucl, Rabat 10000, Morocco
[5] MAScIR, Inst Nanomat & Nanotechnol, Rabat 10112, Morocco
[6] Hassan II Acad Sci & Technol, Rabat 10170, Morocco
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2014年 / 118卷 / 09期
关键词
D O I
10.1021/jp407820a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Inspired by Lie symmetries, we study the electronic and magnetic properties of cobalt (Co) and nickel (Ni) adatom adsorption on the graphene material using density functional theory calculations. The system we consider here consists of a static single layer of graphene interacting with transition-metal (TM) atoms. This system shows a nice geometrical shape having a double hexagonal structure appearing in the G(2) Lie algebra. This structure is associated 8 with 25% concentration corresponding to a coverage of 0.666 monolayers placed at H sites. This new symmetry forces the derived Co material to behave like a ferromagnetic metal with a strong spin polarization. However, the derived Ni material remains a nonmagnetic metal. For the Co case, we show that the magnetic mechanism responsible for such behavior is the interaction between the Co atoms. In fact, there are two interaction types. The first one is associated with the direct interaction between the Co atoms, while the second one corresponds to the indirect interaction via the carbon atoms. Using Monte Carlo simulation, the Curie temperature for the Co material is estimated to be around 438 K. This value could be explored in nanomagnetic applications.
引用
收藏
页码:4924 / 4929
页数:6
相关论文
共 50 条
  • [1] Electronic and Magnetic Properties of Iron Adsorption on Graphene with Double Hexagonal Geometry
    Naji, Sufyan
    Belhaj, Adil
    Labrim, Hicham
    Bhihi, Mohamed
    Benyoussef, Abdelilah
    El Kenz, Abdallah
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2014, 114 (07) : 463 - 467
  • [2] Electronic and magnetic properties of silicon adsorption on graphene
    Hu, C. H.
    Zheng, Y.
    Zhang, Y.
    Wu, S. Q.
    Wen, Y. H.
    Zhu, Z. Z.
    SOLID STATE COMMUNICATIONS, 2011, 151 (17) : 1128 - 1130
  • [3] Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni
    Varykhalov, A.
    Sanchez-Barriga, J.
    Shikin, A. M.
    Biswas, C.
    Vescovo, E.
    Rybkin, A.
    Marchenko, D.
    Rader, O.
    PHYSICAL REVIEW LETTERS, 2008, 101 (15)
  • [4] MAGNETIC PROPERTIES OF A SUPERCONDUCTOR WITH HEXAGONAL SYMMETRY
    TAKANAKA, K
    EBISAWA, H
    PROGRESS OF THEORETICAL PHYSICS, 1972, 47 (05): : 1781 - &
  • [5] Electronic properties of doped hexagonal graphene
    Tian Wen
    Yuan Peng-Fei
    Yu Zhuo-Liang
    Tao Bin-Kai
    Hou Sen-Yao
    Ye Cong
    Zhang Zhen-Hua
    ACTA PHYSICA SINICA, 2015, 64 (04)
  • [6] Influences of electronic spin structures on the magnetic properties of Fe, Co and Ni ions and the adsorption of collectors
    Chen, Jianhua
    Yang, Xi
    Li, Yuqiong
    Liu, Yingchao
    MINERALS ENGINEERING, 2020, 154
  • [7] Electronic structure and magnetic properties of graphene/Co composite
    Zhidkov, I. S.
    Skorikov, N. A.
    Korolev, A. V.
    Kukharenko, A. I.
    Kurmaev, E. Z.
    Fedorov, V. E.
    Cholakh, S. O.
    CARBON, 2015, 91 : 298 - 303
  • [8] Electronic and magnetic properties of zigzag-edged hexagonal graphene ring nanojunctions
    Wang, D.
    Zhang, Z.
    Zhang, J.
    Deng, X.
    Fan, Z.
    Tang, G.
    CARBON, 2015, 94 : 996 - 1002
  • [9] MAGNETIC-PROPERTIES OF HEXAGONAL-CLOSE-PACKED CO AND NI
    MAKSIMOVIC, GD
    VUKAJLOVIC, FR
    PHYSICA B, 1992, 176 (03): : 227 - 231
  • [10] Magnetic Properties of Hexagonal Graphene Nanomeshes
    Zwierzycki, M.
    Ryndyk, D.
    ACTA PHYSICA POLONICA A, 2017, 131 (04) : 830 - 832