Synthesis and characterization of LiNi0.6Mn0.4-xCoxO2 as cathode materials for Li-ion batteries

被引:122
|
作者
Li, Jiangang [2 ]
Wang, Li [1 ]
Zhang, Qian [2 ]
He, Xiangming [1 ,2 ]
机构
[1] Tsinghua Univ, Insitute Nucl & New Energy Technol, Beijing 100084, Peoples R China
[2] Beijing Inst Petrochem Technol, Sch Chem Engn, Beijing 102617, Peoples R China
关键词
Cathode materials; Layered composite oxide; LiNi0.6Mn0.4-xCoxO2; Li-ion battery; SECONDARY LITHIUM BATTERIES; ELECTROCHEMICAL PERFORMANCE; RECHARGEABLE BATTERIES; COPRECIPITATION METHOD; ORTHORHOMBIC LIMNO2; LIMN2O4; CELLS; INTERCALATION; ELECTRODES; INSERTION;
D O I
10.1016/j.jpowsour.2008.12.046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiNi0.6CoxMn0.4-xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are prepared, and their structural and electrochemical properties are investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetric (DSC) and charge-discharge test. The results show that well-ordering layered LiNi0.6CoxMn0.4-xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are successfully prepared in air at 850 degrees C. The increase of the Co content in LiNi0.6Mn0.4-xCoxO2 leads to the acceleration of the grain growth, the increase of the initial discharge capacity and the deterioration of the cycling performance of LiNi0.6Mn0.4-xCoxO2. It also leads to the enhancement of the ratio Ni3+/Ni2+ in LiNi0.6CoxMn0.4-xO2, which is approved by the XPS analysis, resulting in the increase of the phase transition during cycling. This is speculated to be main reason for the deteriotion of the cycling performance. All synthesized LiNi0.6CoxMn0.4-xO2 samples charged at 4.3 V show exothermic peaks with an onset temperature of larger than 255 degrees C, and give out less than 400 J g(-1) of total heat flow associated with the peaks in DSC analysis profile, exhibiting better thermal stability. LiNi0.6CoxMn0.4-xO2 with low Co content and good thermal stability presents a capacity of 156.6 mAh g(-1) and 98.5% of initial capacity retention after 50 cycles, showing to be a promising cathode materials for Li-ion batteries. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 33
页数:6
相关论文
共 50 条
  • [1] LiNi0.6Co0.4-zTizO2 - New cathode materials for Li-ion batteries
    Baster, Dominika
    Paziak, Piotr
    Ziabka, Magdalena
    Wazny, Gabriela
    Molenda, Janina
    SOLID STATE IONICS, 2018, 320 : 118 - 125
  • [2] Synthesis and characterization of Cu-doped LiNi0.6Co0.2Mn0.2O2 materials for Li-ion batteries
    Lu, Yang
    Jin, Hongfei
    Mo, Yan
    Qu, Yanyu
    Du, Baodong
    Chen, Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 844
  • [3] Synthesis and characterization of an improved nanocomposite cathode materials for Li-ion batteries
    Velez, Crystal Otero
    Ramos, Santander Nieto
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [4] Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries
    Wu, Borong (wubr@bit.edu.cn), 1600, Elsevier Ltd (674):
  • [5] Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries
    Wang, Lei
    Wu, Borong
    Mu, Daobin
    Liu, Xiaojiang
    Peng, Yiyuan
    Xu, Hongliang
    Liu, Qi
    Gai, Liang
    Wu, Feng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 674 : 360 - 367
  • [6] Synthesis and characterization of Zr-doped LiNi0.4Co0.2Mn0.4O2 cathode materials for lithium ion batteries
    Chen, QiYuan
    Du, Chenqiang
    Qu, Deyang
    Zhang, Xinhe
    Tang, Zhiyuan
    RSC ADVANCES, 2015, 5 (92) : 75248 - 75253
  • [7] Ultrathin-ZrO2-coated LiNi0.4Co0.2Mn0.4O2 cathode material for Li-ion batteries: Synthesis and electrochemical performance
    Liu, Jingjun
    Yuan, Mingliang
    Xie, Tangfeng
    Yan, Guanjie
    JOURNAL OF MATERIALS RESEARCH, 2022, 37 (05) : 1019 - 1029
  • [8] Synthesis and Electrochemical Properties of Hexagonal Sliced LiNi0.5Mn0.5O2 as Cathode Materials for Li-ion Batteries
    Dou, Shumei
    Li, Qing
    ASIAN JOURNAL OF CHEMISTRY, 2014, 26 (09) : 2632 - 2636
  • [9] Ultrathin-ZrO2-coated LiNi0.4Co0.2Mn0.4O2 cathode material for Li-ion batteries: Synthesis and electrochemical performance
    Jingjun Liu
    Mingliang Yuan
    Tangfeng Xie
    Guanjie Yan
    Journal of Materials Research, 2022, 37 : 1019 - 1029
  • [10] Synthesis and electrochemical performance of LiNi1-xCoxO2 cathode materials for lithium ion batteries
    Huang, YQ
    Guo, WY
    Li, DC
    Peng, ZH
    Zhou, YH
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2005, 21 (05) : 736 - 740