Nonlinear Varying-Coefficient Models with Applications to a Photosynthesis Study

被引:2
|
作者
Kurum, Esra [1 ]
Li, Runze [2 ,3 ]
Wang, Yang [4 ]
Senturk, Damla [5 ]
机构
[1] Istanbul Medeniyet Univ, Dept Stat, Istanbul, Turkey
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[3] Penn State Univ, Methodol Ctr, University Pk, PA 16802 USA
[4] China Vanke, Div Strateg Investment Mkt & Treasury, Quantitat Mkt Res, Shenzhen 518093, Peoples R China
[5] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
基金
中国国家自然科学基金;
关键词
Generalized F-test; Local linear regression; Nonlinear regression model; Varying coefficient models; MULTIPLE-REGRESSION;
D O I
10.1007/s13253-013-0157-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivated by a study on factors affecting the level of photosynthetic activity in a natural ecosystem, we propose nonlinear varying-coefficient models, in which the relationship between the predictors and the response variable is allowed to be nonlinear. One-step local linear estimators are developed for the nonlinear varying-coefficient models and their asymptotic normality is established leading to point-wise asymptotic confidence bands for the coefficient functions. Two-step local linear estimators are also proposed for cases where the varying-coefficient functions admit different degrees of smoothness; bootstrap confidence intervals are utilized for inference based on the two-step estimators. We further propose a generalized F-test to study whether the coefficient functions vary over a covariate. We illustrate the proposed methodology via an application to an ecology data set and study the finite sample performance by Monte Carlo simulation studies.
引用
收藏
页码:57 / 81
页数:25
相关论文
共 50 条
  • [1] Nonlinear Varying-Coefficient Models with Applications to a Photosynthesis Study
    Esra Kürüm
    Runze Li
    Yang Wang
    Damla Şentürk
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2014, 19 : 57 - 81
  • [2] VARYING-COEFFICIENT MODELS
    HASTIE, T
    TIBSHIRANI, R
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1993, 55 (04): : 757 - 796
  • [3] ON VARYING-COEFFICIENT INDEPENDENCE SCREENING FOR HIGH-DIMENSIONAL VARYING-COEFFICIENT MODELS
    Song, Rui
    Yi, Feng
    Zou, Hui
    [J]. STATISTICA SINICA, 2014, 24 (04) : 1735 - 1752
  • [4] Adaptively varying-coefficient spatiotemporal models
    Lu, Zudi
    Steinskog, Dag Johan
    Tjostheim, Dag
    Yao, Qiwei
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 859 - 880
  • [5] Jump-preserving varying-coefficient models for nonlinear time series
    Cizek, Pavel
    Koo, Chao Hui
    [J]. ECONOMETRICS AND STATISTICS, 2021, 19 : 58 - 96
  • [6] Varying-coefficient models for dynamic networks
    Lee, Jihui
    Li, Gen
    Wilson, James D.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 152
  • [7] Categorical semiparametric varying-coefficient models
    Li, Qi
    Ouyang, Desheng
    Racine, Jeffrey S.
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2013, 28 (04) : 551 - 579
  • [8] Smooth varying-coefficient models in Stata
    Rios-Avila, Fernando
    [J]. STATA JOURNAL, 2020, 20 (03): : 647 - 679
  • [9] Adaptive varying-coefficient linear models
    Fan, JQ
    Yao, QW
    Cai, ZW
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 57 - 80
  • [10] Semiparametric varying-coefficient study of mean residual life models
    Yang, Guangren
    Zhou, Yong
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 128 : 226 - 238