Prediction of protein structural classes using support vector machines

被引:133
|
作者
Sun, X. -D. [1 ]
Huang, R. -B. [1 ]
机构
[1] Guangxi Univ, Coll Life Sci & Biotechnol, Nanning 530004, Guangxi, Peoples R China
关键词
support vector machines; CATH; multi-class; protein structural class prediction; jackknifing;
D O I
10.1007/s00726-005-0239-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The support vector machine, a machine-learning method, is used to predict the four structural classes, i.e. mainly alpha, mainly beta, alpha-beta and fss, from the topology-level of CATH protein structure database. For the binary classification, any two structural classes which do not share any secondary structure such as alpha and beta elements could be classified with as high as 90% accuracy. The accuracy, however, will decrease to less than 70% if the structural classes to be classified contain structure elements in common. Our study also shows that the dimensions of feature space 20(2) = 400 (for dipeptide) and 20(3) = 8 000 (for tripeptide) give nearly the same prediction accuracy. Among these 4 structural classes, multi-class classification gives an overall accuracy of about 52%, indicating that the multi-class classification technique in support of vector machines may still need to be further improved in future investigation.
引用
收藏
页码:469 / 475
页数:7
相关论文
共 50 条
  • [1] Prediction of protein structural classes using support vector machines
    X.-D. Sun
    R.-B. Huang
    Amino Acids, 2006, 30 : 469 - 475
  • [2] Prediction of protein structural classes by support vector machines
    Cai, YD
    Liu, XJ
    Xu, XB
    Chou, KC
    COMPUTERS & CHEMISTRY, 2002, 26 (03): : 293 - 296
  • [3] Using Support Vector Machines for Prediction of Protein Structural Classes Based on Discrete Wavelet Transform
    Qiu, Jian-Ding
    Luo, San-Hua
    Huang, Jian-Hua
    Liang, Ru-Ping
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (08) : 1344 - 1350
  • [4] Support vector machines for prediction of protein domain structural class
    Cai, YD
    Liu, XJ
    Xu, XB
    Chou, KC
    JOURNAL OF THEORETICAL BIOLOGY, 2003, 221 (01) : 115 - 120
  • [5] Prediction of Protein Structural Classes Using the Theory of Increment of Diversity and Support Vector Machine
    WANG Fangping1
    2.College of Sciences and Technology
    Wuhan University Journal of Natural Sciences, 2011, 16 (03) : 260 - 264
  • [6] Prediction of protein-protein interactions using support vector machines
    Dohkan, S
    Koike, A
    Takagi, T
    BIBE 2004: FOURTH IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, PROCEEDINGS, 2004, : 576 - 583
  • [7] Prediction of protein solvent accessibility using support vector machines
    Yuan, Z
    Burrage, K
    Mattick, JS
    PROTEINS-STRUCTURE FUNCTION AND GENETICS, 2002, 48 (03): : 566 - 570
  • [8] Transmembrane protein topology prediction using support vector machines
    Nugent, Timothy
    Jones, David T.
    BMC BIOINFORMATICS, 2009, 10
  • [9] Transmembrane protein topology prediction using support vector machines
    Timothy Nugent
    David T Jones
    BMC Bioinformatics, 10
  • [10] Prediction of protein subcellular locations using support vector machines
    Li, NN
    Niu, XH
    Shi, F
    Li, XY
    ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 1047 - 1051