BASIC RESULTS OF FRACTIONAL ORLICZ-SOBOLEV SPACE AND APPLICATIONS TO NON-LOCAL PROBLEMS

被引:38
|
作者
Bahrouni, Sabri [1 ]
Ounaies, Hichem [1 ]
Tavares, Leandro S. [2 ]
机构
[1] Univ Monastir, Fac Sci, Math Dept, Monastir 5019, Tunisia
[2] Univ Fed Cariri, Ctr Ciencias & Tecnol, BR-63048080 Juazeiro Do Norte, CE, Brazil
关键词
Fractional Orlicz-Sobolev space; fractional M-Laplacian; nonlocal problems; existence of solution; DIFFERENTIAL-OPERATORS; POSITIVE SOLUTIONS; LAPLACIAN; EQUATIONS;
D O I
10.12775/TMNA.2019.111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the interplay between the Orlicz- Sobolev spaces L-M and W(1,M )and the fractional Sobolev spaces W-s,W- p. More precisely, we give some qualitative properties of a new fractional Orlicz-Sobolev space W-s,W-M, where s is an element of (0, 1) and M is a Young function. We also study a related non-local operator, which is a fractional version of the nonhomogeneous M-Laplace operator. As an application, we prove existence of a weak solution for a non-local problem involving the new fractional M-Laplacian operator.
引用
收藏
页码:681 / 695
页数:15
相关论文
共 50 条
  • [1] EMBEDDING THEOREMS IN THE FRACTIONAL ORLICZ-SOBOLEV SPACE AND APPLICATIONS TO NON-LOCAL PROBLEMS
    Bahrouni, Sabri
    Ounaies, Hichem
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (05) : 2917 - 2944
  • [2] A class of non-local elliptic system in non-reflexive fractional Orlicz-Sobolev spaces
    El-Houari, Hamza
    Chadli, Lalla Saadia
    Moussa, Hicham
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (07)
  • [3] On topological degree for pseudomonotone operators in fractional Orlicz-Sobolev spaces: study of positive solutions of non-local elliptic problems
    H. El-Houari
    H. Sabiki
    H. Moussa
    [J]. Advances in Operator Theory, 2024, 9
  • [4] On topological degree for pseudomonotone operators in fractional Orlicz-Sobolev spaces: study of positive solutions of non-local elliptic problems
    El-Houari, H.
    Sabiki, H.
    Moussa, H.
    [J]. ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [5] A new class of fractional Orlicz-Sobolev space and singular elliptic problems
    Boujemaa, Hamza
    Oulgiht, Badr
    Ragusa, Maria Alessandra
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [6] Fractional Orlicz-Sobolev embeddings
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 149 : 216 - 253
  • [7] On a class of nonvariational problems in fractional Orlicz-Sobolev spaces
    Bahrouni, Anouar
    Bahrouni, Sabri
    Xiang, Mingqi
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190
  • [8] ON THE FRACTIONAL ELLIPTIC PROBLEMS WITH DIFFERENCE IN THE ORLICZ-SOBOLEV SPACES
    Jung, Tacksun
    Choi, Q-Heung
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2022, 27 (5-6) : 385 - 406
  • [9] On fractional Orlicz-Sobolev spaces
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [10] AN ORLICZ-SOBOLEV SPACE SETTING FOR QUASILINEAR ELLIPTIC PROBLEMS
    Halidias, Nikolaos
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2005,