共 9 条
Characterization of para-Nitrophenol-Degrading Bacterial Communities in River Water by Using Functional Markers and Stable Isotope Probing
被引:24
|作者:
Kowalczyk, Agnieszka
[1
]
Eyice, Oezge
[1
]
Schaefer, Hendrik
[1
]
Price, Oliver R.
[2
]
Finnegan, Christopher J.
[2
]
van Egmond, Roger A.
[2
]
Shaw, Liz J.
[3
]
Barrett, Glyn
[3
,4
]
Bending, Gary D.
[1
]
机构:
[1] Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England
[2] Unilever Safety & Environm Assurance Ctr, Sharnbrook, Beds, England
[3] Univ Reading, Dept Geog & Environm Sci, Reading, Berks, England
[4] Univ Reading, Sch Biol Sci, Reading, Berks, England
基金:
英国自然环境研究理事会;
关键词:
P-NITROPHENOL;
MALEYLACETATE REDUCTASE;
GENE-CLUSTER;
BIODEGRADATION;
DEGRADATION;
IDENTIFICATION;
SEQUENCES;
PENTACHLOROPHENOL;
GREENGENES;
PARATHION;
D O I:
10.1128/AEM.01794-15
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [C-13(6)] PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations.
引用
收藏
页码:6890 / 6900
页数:11
相关论文