Self-consistent theory of intrinsic localized modes: Application to monatomic chain

被引:8
|
作者
Hizhnyakov, V.
Shelkan, A.
Klopov, M.
机构
[1] Univ Tartu, Inst Phys, EE-51014 Tartu, Estonia
[2] Tallinn Univ Technol, Inst Phys, EE-19086 Tallinn, Estonia
关键词
lattice vibrations; anharmonicity; intrinsic localized mode;
D O I
10.1016/j.physleta.2006.04.064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A theory of intrinsic localized modes (ILMs) in anharmonic lattices is developed, which allows one to reduce the original nonlinear problem to a linear problem of small variations of the mode. This enables us to apply the Lifshitz method of the perturbed phonon dynamics for the calculations of ILMs. In order to check the theory, the ILMs in monatomic chain are considered. A comparison of the results with the corresponding molecular dynamics calculations shows an excellent agreement. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:393 / 396
页数:4
相关论文
共 50 条
  • [1] Self-consistent potential of intrinsic localized modes: Application to diatomic chain
    Shelkan, A.
    Hizhnyakov, V.
    Klopov, M.
    PHYSICAL REVIEW B, 2007, 75 (13)
  • [2] Transverse intrinsic localized modes in monatomic chain and in graphene
    Hizhnyakov, V.
    Klopov, M.
    Shelkan, A.
    PHYSICS LETTERS A, 2016, 380 (9-10) : 1075 - 1081
  • [3] Linear local modes induced by intrinsic localized modes in a monatomic chain
    Hizhnyakov, V.
    Shelkan, A.
    Klopov, M.
    Kiselev, S. A.
    Sievers, A. J.
    PHYSICAL REVIEW B, 2006, 73 (22)
  • [4] SELF-CONSISTENT PHONON METHOD FOR MONATOMIC CRYSTALS
    FISHER, RA
    ALLNATT, AR
    MOLECULAR PHYSICS, 1973, 26 (06) : 1539 - 1543
  • [5] Multiconfigurational Self-Consistent Field Theory with Density Matrix Embedding: The Localized Active Space Self-Consistent Field Method
    Hermes, Matthew R.
    Gagliardi, Laura
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (02) : 972 - 986
  • [6] Self-consistent strictly localized orbitals
    Loos, Pierre-Francois
    Assfeld, Xavier
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2007, 3 (03) : 1047 - 1053
  • [7] Self-consistent theory of turbulence
    S. A. Ktitorov
    Technical Physics Letters, 2007, 33 : 699 - 700
  • [8] Self-consistent perturbation theory
    McWeeny, R.
    CHEMICAL PHYSICS LETTERS, 1968, 1 (12) : 567 - 568
  • [9] Self-consistent theory of turbulence
    Ktitorov, S. A.
    TECHNICAL PHYSICS LETTERS, 2007, 33 (08) : 699 - 700
  • [10] ON THE SELF-CONSISTENT THEORY OF LOCALIZATION
    ANTSYGINA, TN
    PASTUR, LA
    SLUSAREV, VA
    SOLID STATE COMMUNICATIONS, 1984, 51 (05) : 301 - 303