Sensitivity estimation for dark matter subhalos in synthetic Gaia DR2 using deep learning

被引:2
|
作者
Bazarov, A. [1 ]
Benito, M. [1 ,2 ]
Hutsi, G. [1 ]
Kipper, R. [2 ]
Pata, J. [1 ]
Poder, S. [1 ]
机构
[1] NICPB, Ravala 10, EE-10143 Tallinn, Estonia
[2] Univ Tartu, Tartu Observ, Observatooriumi 1, EE-61602 Toravere, Estonia
关键词
Machine learning; Dark matter; Dark subhalos; Gaia mission; Milky Way; NEURAL-NETWORKS; SUBSTRUCTURE; EVOLUTION; GALAXIES; PHYSICS;
D O I
10.1016/j.ascom.2022.100667
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The abundance of dark matter subhalos orbiting a host galaxy is a generic prediction of the cosmological framework, and is a promising way to constrain the nature of dark matter. In this paper, we investigate the use of machine learning-based tools to quantify the magnitude of phase-space perturbations caused by the passage of dark matter subhalos. A simple binary classifier and an anomaly detection model are proposed to estimate if stars or star particles close to dark matter subhalos are statistically detectable in simulations. The simulated datasets are three Milky Way-like galaxies and nine synthetic Gaia DR2 surveys derived from these. Firstly, we find that the anomaly detection algorithm, trained on a simulated galaxy with full 6D kinematic observables and applied on another galaxy, is nontrivially sensitive to the dark matter subhalo population. On the other hand, the classification-based approach is not sufficiently sensitive due to the extremely low statistics of signal stars for supervised training. Finally, the sensitivity of both algorithms in the Gaia-like surveys is negligible. The enormous size of the Gaia dataset motivates the further development of scalable and accurate data analysis methods that could be used to select potential regions of interest for dark matter searches to ultimately constrain the Milky Way's subhalo mass function, as well as simulations where to study the sensitivity of such methods under different signal hypotheses. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Using Gaia DR2 to constrain local dark matter density and thin dark disk
    Buch, Jatan
    Leung, Shing Chau
    Fan, Jiji
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (04):
  • [2] Cataloging accreted stars within Gaia DR2 using deep learning
    Ostdiek, B.
    Necib, L.
    Cohen, T.
    Freytsis, M.
    Lisanti, M.
    Garrison-Kimmmel, S.
    Wetzel, A.
    Sanderson, R. E.
    Hopkins, P. F.
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 636
  • [3] Cataloging accreted stars within Gaia DR2 using deep learning
    Ostdiek, B.
    Necib, L.
    Cohen, T.
    Freytsis, M.
    Lisanti, M.
    Garrison-Kimmmel, S.
    Wetzel, A.
    Sanderson, R.E.
    Hopkins, P.F.
    [J]. Astronomy and Astrophysics, 2020, 636
  • [4] Chasing Accreted Structures within Gaia DR2 Using Deep Learning
    Necib, Lina
    Ostdiek, Bryan
    Lisanti, Mariangela
    Cohen, Timothy
    Freytsis, Marat
    Garrison-Kimmel, Shea
    [J]. ASTROPHYSICAL JOURNAL, 2020, 903 (01):
  • [5] Measuring the local matter density using Gaia DR2
    Widmark, A.
    [J]. ASTRONOMY & ASTROPHYSICS, 2019, 623
  • [6] Measuring the local dark matter density with LAMOST DR5 and Gaia DR2
    Guo R.
    Liu C.
    Mao S.
    Xue X.-X.
    Long R.J.
    Zhang L.
    [J]. Guo, Rui (guorui13@bao.ac.cn), 1600, Oxford University Press (495): : 4828 - 4844
  • [7] Measuring the local dark matter density with LAMOST DR5 and Gaia DR2
    Guo, Rui
    Liu, Chao
    Mao, Shude
    Xue, Xiang-Xiang
    Long, R. J.
    Zhang, Lan
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 495 (04) : 4828 - 4844
  • [8] A Gaia DR2 search for dwarf galaxies towards Fermi-LAT sources: implications for annihilating dark matter
    Ciuca, Ioana
    Kawata, Daisuke
    Ando, Shin'ichiro
    Calore, Francesca
    Read, Justin I.
    Mateu, Cecilia
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 480 (02) : 2284 - 2291
  • [9] An investigation of open cluster Melotte 72 using Gaia DR2
    Hendy, Yasser
    Tadross, Ashraf
    [J]. ASTRONOMISCHE NACHRICHTEN, 2021, 342 (04) : 613 - 624
  • [10] How close dark matter haloes and MOND are to each other: three-dimensional tests based on Gaia DR2☆
    Zhu, Yongda
    Ma, Hai-Xia
    Dong, Xiao-Bo
    Huang, Yang
    Mistele, Tobias
    Peng, Bo
    Long, Qian
    Wang, Tianqi
    Chang, Liang
    Jin, Xi
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 519 (03) : 4479 - 4498