Trajectory Generation in Joint Space Using Modified Hidden Markov Model

被引:0
|
作者
Garrido, Javier [1 ]
Yu, Wen [1 ]
机构
[1] CINVESTAV IPN, Dept Automat Control, Mexico City, DF, Mexico
关键词
ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human guide robots need to generate a trajectory from human training. The popular work space methods have to calculate the inverse kinematics. While the joint space methods need the dynamic time warping. These destroy the accuracy of the trajectory model. In this paper, we use Lloyd's algorithm to hidden Markov model (HMM). The advantages of the method over the other HMM are the time difference does not affects the HMM training, and the training data can be generated in joint space. We also modify the traditional HMM such that the model in the joint space works similar as the task space. Simulation and experimental results show that the modified HMM with Lloyd's algorithm in joint space is effective to generate the desired trajectory.
引用
收藏
页码:429 / 434
页数:6
相关论文
共 50 条
  • [1] Robot trajectory generation using modified hidden Markov model and Lloyd's algorithm in joint space
    Garrido, Javier
    Yu, Wen
    Li, Xiaoou
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 53 : 32 - 40
  • [2] Hidden Markov Model on a unit hypersphere space for gesture trajectory recognition
    Beh, Jounghoon
    Han, David K.
    Durasiwami, Ramani
    Ko, Hanseok
    [J]. PATTERN RECOGNITION LETTERS, 2014, 36 : 144 - 153
  • [3] A modified hidden Markov model
    van der Hoek, John
    Elliott, Robert J.
    [J]. AUTOMATICA, 2013, 49 (12) : 3509 - 3519
  • [4] Bagging in Hidden Semi-Markov Model for handwriting robot trajectory generation
    Jin, Yongbing
    Ran, Teng
    Yuan, Liang
    Lv, Kai
    Wang, Guoliang
    Xiao, Wendong
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (03) : 6325 - 6335
  • [5] Bagging in Hidden Semi-Markov Model for handwriting robot trajectory generation
    Jin, Yongbing
    Ran, Teng
    Yuan, Liang
    Lv, Kai
    Wang, Guoliang
    Xiao, Wendong
    [J]. Journal of Intelligent and Fuzzy Systems, 2024, 46 (03): : 6325 - 6335
  • [6] Demonstrated trajectory selection by hidden Markov model
    Tso, SK
    Liu, KP
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION - PROCEEDINGS, VOLS 1-4, 1997, : 2713 - 2718
  • [7] Trajectory learning using posterior hidden Markov model state distribution
    Osman, Asmaa A. E.
    El-Khoribi, Reda A.
    Shoman, Mahmoud E.
    Shalaby, M. A. Wahby
    [J]. EGYPTIAN INFORMATICS JOURNAL, 2017, 18 (03) : 171 - 180
  • [8] Track Before Detect of Weak Trajectory Using Hidden Markov Model
    Xin, Jirong
    Le, Bo
    Bo, Liankun
    Luo, Laiyuan
    [J]. PROCEEDINGS OF 2015 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2015), 2015, : 1473 - 1477
  • [9] CityTracker: Citywide Individual and Crowd Trajectory Analysis Using Hidden Markov Model
    Fang, Shih-Hau
    Lin, Larry
    Yang, Yi-Ting
    Yu, Xiaotong
    Xu, Zhezhuang
    [J]. IEEE SENSORS JOURNAL, 2019, 19 (17) : 7693 - 7701
  • [10] Trajectory Recognition Based on Asynchronous Hidden Markov Model
    Qin, Peng
    Chen, Ying
    [J]. FOUNDATIONS OF INTELLIGENT SYSTEMS (ISKE 2013), 2014, 277 : 497 - 507