Two critical localization lengths in the Anderson transition on random graphs

被引:42
|
作者
Garcia-Mata, I [1 ,2 ]
Martin, J. [3 ]
Dubertrand, R. [4 ,5 ]
Giraud, O. [6 ]
Georgeot, B. [7 ]
Lemarie, G. [7 ]
机构
[1] CONICET UNMdP, Inst Invest Fis Mar del Plata IFIMAR, Funes 3350,B7602AYL, Mar Del Plata, Argentina
[2] Consejo Nacl Invest Cient & Tecnol CONICET, Buenos Aires, DF, Argentina
[3] Univ Liege, Inst Phys Nucl Atom & Spect, CESAM, Bat B15, B-4000 Liege, Belgium
[4] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[5] Northumbria Univ, Dept Math Phys & Elect Engn, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[6] Univ Paris Saclay, Univ Paris Sud, CNRS, LPTMS, F-91405 Orsay, France
[7] Univ Toulouse, Lab Phys Theor, UPS, CNRS,IRSAMC, Toulouse, France
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 01期
关键词
MODEL; POLYMERS; SYSTEM; STATES;
D O I
10.1103/PhysRevResearch.2.012020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a full description of the nonergodic properties of wave functions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths: the largest one describes localization along rare branches and diverges with a critical exponent nu(parallel to) = 1 at the transition. The second length, which describes localization along typical branches, reaches at the transition a finite universal value (which depends only on the connectivity of the graph), with a singularity controlled by a new critical exponent nu(perpendicular to) = 1/2. We show numerically that these two localization lengths control the finite-size scaling properties of key observables: wave-function moments, correlation functions, and spectral statistics. Our results are identical to the theoretical predictions for the typical localization length in the many-body localization transition, with the same critical exponent. This strongly suggests that the two transitions are in the same universality class and that our techniques could be directly applied in this context.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Critical behavior at the localization transition on random regular graphs
    Tikhonov, K. S.
    Mirlin, A. D.
    [J]. PHYSICAL REVIEW B, 2019, 99 (21)
  • [2] Localization on Quantum Graphs with Random Edge Lengths
    Klopp, Frederic
    Pankrashkin, Konstantin
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2009, 87 (1-2) : 99 - 114
  • [3] Localization on Quantum Graphs with Random Edge Lengths
    Frédéric Klopp
    Konstantin Pankrashkin
    [J]. Letters in Mathematical Physics, 2009, 87 : 99 - 114
  • [4] Anderson localization and ergodicity on random regular graphs
    Tikhonov, K. S.
    Mirlin, A. D.
    Skvortsov, M. A.
    [J]. PHYSICAL REVIEW B, 2016, 94 (22)
  • [5] Universality in Anderson localization on random graphs with varying connectivity
    Sierant, Piotr
    Lewenstein, Maciej
    Scardicchio, Antonello
    [J]. SCIPOST PHYSICS, 2023, 15 (02):
  • [6] Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
    Garcia-Mata, I
    Martin, J.
    Giraud, O.
    Georgeot, B.
    Dubertrand, R.
    Lemarie, G.
    [J]. PHYSICAL REVIEW B, 2022, 106 (21)
  • [7] Critical behavior in the two-dimensional Anderson model of localization with random hopping
    Eilmes, A
    Romer, RA
    Schreiber, M
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1998, 205 (01): : 229 - 232
  • [8] Critical Behavior in the Two-Dimensional Anderson Model of Localization with Random Hopping
    [J]. Physica Status Solidi (B): Basic Research, 205 (01):
  • [9] Anderson localization for radial tree graphs with random branching numbers
    Damanik, David
    Sukhtaiev, Selim
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (02) : 418 - 433
  • [10] From Anderson localization on random regular graphs to many-body localization
    Tikhonov, K. S.
    Mirlin, A. D.
    [J]. ANNALS OF PHYSICS, 2021, 435