Carbon nanotube bundles with tensile strength over 80 GPa

被引:308
|
作者
Bai, Yunxiang [1 ,2 ]
Zhang, Rufan [1 ]
Ye, Xuan [2 ,3 ]
Zhu, Zhenxing [1 ,2 ]
Xie, Huanhuan [1 ,2 ]
Shen, Boyuan [1 ]
Cai, Dali [1 ]
Liu, Bofei [4 ]
Zhang, Chenxi [1 ,2 ]
Jia, Zhao [1 ]
Zhang, Shenli [1 ]
Li, Xide [2 ,3 ]
Wei, Fei [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing, Peoples R China
[2] Tsinghua Univ, Ctr Nano & Micro Mech, Beijing, Peoples R China
[3] Tsinghua Univ, Dept Engn Mech, AML, Beijing, Peoples R China
[4] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
基金
中国国家自然科学基金;
关键词
SPECTROSCOPY; FIBERS; STRAIN; GROWTH; ARRAYS; METAL;
D O I
10.1038/s41565-018-0141-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon nanotubes (CNTs) are one of the strongest known materials. When assembled into fibres, however, their strength becomes impaired by defects, impurities, random orientations and discontinuous lengths. Fabricating CNT fibres with strength reaching that of a single CNT has been an enduring challenge. Here, we demonstrate the fabrication of CNT bundles (CNTBs) that are centimetres long with tensile strength over 80 GPa using ultralong defect-free CNTs. The tensile strength of CNTBs is controlled by the Daniels effect owing to the non-uniformity of the initial strains in the components. We propose a synchronous tightening and relaxing strategy to release these non-uniform initial strains. The fabricated CNTBs, consisting of a large number of components with parallel alignment, defect-free structures, continuous lengths and uniform initial strains, exhibit a tensile strength of 80 GPa (corresponding to an engineering tensile strength of 43 GPa), which is far higher than that of any other strong fibre.
引用
收藏
页码:589 / +
页数:9
相关论文
共 50 条
  • [1] Carbon nanotube bundles with tensile strength over 80 GPa
    Yunxiang Bai
    Rufan Zhang
    Xuan Ye
    Zhenxing Zhu
    Huanhuan Xie
    Boyuan Shen
    Dali Cai
    Bofei Liu
    Chenxi Zhang
    Zhao Jia
    Shenli Zhang
    Xide Li
    Fei Wei
    [J]. Nature Nanotechnology, 2018, 13 : 589 - 595
  • [2] Tensile and compressive properties of carbon nanotube bundles
    Liew, KM
    Wong, CH
    Tan, MJ
    [J]. ACTA MATERIALIA, 2006, 54 (01) : 225 - 231
  • [4] Carbon nanotubes exhibit tensile strength of 63 GPa
    不详
    [J]. MRS BULLETIN, 2000, 25 (04) : 12 - 13
  • [5] Determination of tensile strength distribution of nanotubes from testing of nanotube bundles
    Xiao, T.
    Ren, Y.
    Liao, K.
    Wu, P.
    Li, F.
    Cheng, H. M.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (14) : 2937 - 2942
  • [6] Fast carbon nanotube growth on carbon fiber keeping tensile strength
    Ribeiro Cardoso, Lays Dias
    Carvajal Bravo Gomes, Marines Chiquinquira
    Antunes, Erica Freire
    Silva, Fabio Santos
    Trava-Airoldi, Vladimir Jesus
    Corat, Evaldo Jose
    [J]. COMPOSITE INTERFACES, 2021, 28 (09) : 859 - 878
  • [7] Covalent crosslinking of carbon nanotube materials for improved tensile strength
    Baker, James S.
    Williams, Tiffany S.
    Miller, Sandi G.
    Meador, Michael A.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [8] A predictive model of the tensile strength of twisted carbon nanotube yarns
    Jeon, Seung-Yeol
    Jang, Jinhyeok
    Koo, Bon-Woong
    Kim, Young-Woon
    Yu, Woong-Ryeol
    [J]. NANOTECHNOLOGY, 2017, 28 (01)
  • [9] Carbon nanotube springs with high tensile strength and energy density
    Wu, Tong
    Wang, Jian Nong
    [J]. RSC ADVANCES, 2016, 6 (44): : 38187 - 38191
  • [10] Computation of the loading diagram and the tensile strength of carbon nanotube networks
    Zsoldos, I.
    Laszlo, I.
    [J]. CARBON, 2009, 47 (05) : 1327 - 1334