The Cayley isomorphism property for the group

被引:1
|
作者
Ryabov, Grigory [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
Isomorphisms; DCI-groups; Schur rings;
D O I
10.1080/00927872.2020.1853141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite group G is called a DCI-group if every two isomorphic Cayley digraphs over G are Cayley isomorphic, i.e. their connection sets are conjugate by a group automorphism. We prove that the group C-4 x C-p(2), where p is a prime, is a DCI-group if and only if p not equal 2:
引用
收藏
页码:1788 / 1804
页数:17
相关论文
共 50 条