HIGH-FREQUENCY ACOUSTIC IMPEDANCE IMAGING OF CANCER CELLS

被引:26
|
作者
Fadhel, Muhannad N. [1 ]
Berndl, Elizabeth S. L. [1 ]
Strohm, Eric M. [1 ]
Kolios, Michael C. [1 ]
机构
[1] Ryerson Univ, Dept Phys, Toronto, ON M5B 2K3, Canada
来源
ULTRASOUND IN MEDICINE AND BIOLOGY | 2015年 / 41卷 / 10期
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Acoustic impedance; Breast cancer cells; Acoustic impedance imaging; Acoustic microscopy; ELASTIC PROPERTIES; SCATTERING; BACKSCATTER; MICROSCOPE; DENSITY;
D O I
10.1016/j.ultrasmedbio.2015.06.003
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Variations in the acoustic impedance throughout cells and tissue can be used to gain insight into cellular microstructures and the physiologic state of the cell. Ultrasound imaging can be used to create a map of the acoustic impedance, on which fluctuations can be used to help identify the dominant ultrasound scattering source in cells, providing information for ultrasound tissue characterization. The physiologic state of a cell can be inferred from the average acoustic impedance values, as many cellular physiologic changes are linked to an alteration in their mechanical properties. A recently proposed method, acoustic impedance imaging, has been used to measure the acoustic impedance maps of biological tissues, but the method has not been used to characterize individual cells. Using this method to image cells can result in more precise acoustic impedance maps of cells than obtained previously using time-resolved acoustic microscopy. We employed an acoustic microscope using a transducer with a center frequency of 375 MHz to calculate the acoustic impedance of normal (MCF-10 A) and cancerous (MCF-7) breast cells. The generated acoustic impedance maps and simulations suggest that the position of the nucleus with respect to the polystyrene substrate may have an effect on the measured acoustic impedance value of the cell. Fluorescence microscopy and confocal microscopy were used to correlate acoustic impedance images with the position of the nucleus within the cell. The average acoustic impedance statistically differed between normal and cancerous breast cells (1.636 +/- 0.010 MRayl vs. 1.612 +/- 0.006 MRayl), indicating that acoustic impedance could be used to differentiate between normal and cancerous cells. (E-mail: mkolios@ryerson.ca) (C) 2015 World Federation for Ultrasound in Medicine & Biology.
引用
收藏
页码:2700 / 2713
页数:14
相关论文
共 50 条
  • [1] High-frequency electromagnetic impedance method for subsurface imaging
    Song, Y
    Kim, HJ
    Lee, KH
    [J]. GEOPHYSICS, 2002, 67 (02) : 501 - 510
  • [2] Ultrawide Bandwidth High-Frequency Ultrasonic Transducers With Gradient Acoustic Impedance Matching Layer for Biomedical Imaging
    Zhao, Jianxin
    Li, Zhaoxi
    Fei, Chunlong
    Hou, Chenxue
    Wang, Danfeng
    Lou, Lifei
    Chen, Dongdong
    Li, Di
    Chen, Zeyu
    Yang, Yintang
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2022, 69 (06) : 1952 - 1959
  • [3] ASSESSMENT OF ACOUSTIC TRAUMA IN AN EXTENDED HIGH-FREQUENCY RANGE WITH IMPEDANCE MEASUREMENTS
    BELSKA, D
    GEREK, T
    [J]. SOVIET PHYSICS ACOUSTICS-USSR, 1979, 25 (05): : 442 - 443
  • [4] Imaging of focal contacts of chicken heart muscle cells by high-frequency acoustic microscopy
    Weiss, Eike C.
    Lemor, Robert M.
    Pilarczyk, Goetz
    Anastasiadis, Pavlos
    Zinin, Pavel V.
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2007, 33 (08): : 1320 - 1326
  • [5] HIGH-FREQUENCY IMPEDANCE ANALYZER
    YONEKURA, T
    [J]. HEWLETT-PACKARD JOURNAL, 1994, 45 (05): : 67 - 74
  • [6] High-frequency impedance meter
    Bateman, C
    [J]. ELECTRONICS WORLD, 2001, 107 (1777): : 24 - 30
  • [7] Beamforming and imaging with acoustic lenses in small, high-frequency sonars
    Belcher, EO
    Dinh, HQ
    Lynn, DC
    Laughlin, TJ
    [J]. OCEANS '99 MTS/IEEE : RIDING THE CREST INTO THE 21ST CENTURY, VOLS 1-3, 1999, : 1495 - 1499
  • [8] A broadband high-frequency electrical impedance tomography system for breast Imaging
    Halter, Ryan J.
    Hartov, Alex
    Paulsen, Keith D.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (02) : 650 - 659
  • [9] High-frequency acoustic noise of lake baikal High-frequency acoustic noise of Lake Baikal
    Ainutdinov, V. M.
    Balkanov, V. A.
    Belolaptikov, I. A.
    Bezrukov, L. B.
    Budnev, N. M.
    Vasil'ev, R. V.
    Wischnewski, R.
    Gaponenko, O. N.
    Gnatovskii, R. Yu.
    Gress, O. A.
    Gress, T. I.
    Grishin, O. G.
    Danil'chenko, I. A.
    Dzhilkibaev, Zh. -A. M.
    Doroshenko, A. A.
    Dyachok, A. N.
    Domogatskii, G. V.
    Zhukov, V. A.
    Klabukov, A. M.
    Klimov, A. I.
    Klimushin, S. I.
    Konishchev, K. V.
    Kochanov, A. A.
    Koshechkin, A. P.
    Kulepov, V. F.
    Kuz'michev, L. A.
    Lubsandorzhiev, B. K.
    Mikolajskii, T.
    Milenin, M. B.
    Mirgazov, R. R.
    Mikheev, S. P.
    Osipova, E. A.
    Panfilov, A. I.
    Pavlov, A. A.
    Pan'kov, G. L.
    Pan'kov, L. V.
    Pliskovskii, E. N.
    Poleshchuk, V. A.
    Popova, E. G.
    Pokhil, P. G.
    Prosin, V. V.
    Rozanov, M. I.
    Rubtsov, V. Yu.
    Tarashchanskii, B. A.
    Fialkovskii, S. V.
    Chenskii, A. G.
    Shaibonov, B. A.
    Spiering, Ch.
    Streicher, O.
    Yashin, I. V.
    [J]. ACOUSTICAL PHYSICS, 2006, 52 (05) : 495 - 504
  • [10] High-Frequency Multipulse, Plane-Wave Acoustic Contrast Imaging
    Ketterling, Jeffrey A.
    Silverman, Ronald H.
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (05) : 934 - 942