Principal Component Analysis by Lp-Norm Maximization

被引:101
|
作者
Kwak, Nojun [1 ]
机构
[1] Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Suwon, South Korea
关键词
Gradient; Lp-norm; optimization; PCA-Lp; principal component analysis (PCA);
D O I
10.1109/TCYB.2013.2262936
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes several principal component analysis (PCA) methods based on L-p-norm optimization techniques. In doing so, the objective function is defined using the L-p-norm with an arbitrary p value, and the gradient of the objective function is computed on the basis of the fact that the number of training samples is finite. In the first part, an easier problem of extracting only one feature is dealt with. In this case, principal components are searched for either by a gradient ascent method or by a Lagrangian multiplier method. When more than one feature is needed, features can be extracted one by one greedily, based on the proposed method. Second, a more difficult problem is tackled that simultaneously extracts more than one feature. The proposed methods are shown to find a local optimal solution. In addition, they are easy to implement without significantly increasing computational complexity. Finally, the proposed methods are applied to several datasets with different values of p and their performances are compared with those of conventional PCA methods.
引用
收藏
页码:594 / 609
页数:16
相关论文
共 50 条
  • [1] Robust Tensor Principal Component Analysis by Lp-Norm for Image Analysis
    Tang, Ganyi
    Lu, Guifu
    Wang, Zhongqun
    Xie, Yukai
    [J]. 2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 568 - 573
  • [2] Feature extraction based on Lp-norm generalized principal component analysis
    Liang, Zhizheng
    Xia, Shixiong
    Zhou, Yong
    Zhang, Lei
    Li, Youfu
    [J]. PATTERN RECOGNITION LETTERS, 2013, 34 (09) : 1037 - 1045
  • [3] COMBINATORIAL SEARCH FOR THE Lp-NORM PRINCIPAL COMPONENT OF A MATRIX
    Chachlakis, Dimitris G.
    Markopoulos, Panos P.
    [J]. CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1611 - 1615
  • [4] Robust and Sparse Tensor Analysis with Lp-norm Maximization
    Tang, Ganyi
    Lu, Guifu
    Wang, Zhongqun
    [J]. PROCEEDINGS OF 2017 8TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2017), 2017, : 751 - 756
  • [6] Independent component analysis by lp-norm optimization
    Park, Sungheon
    Kwak, Nojun
    [J]. PATTERN RECOGNITION, 2018, 76 : 752 - 760
  • [7] Complete Dictionary Learning via lp-norm Maximization
    Shen, Yifei
    Xue, Ye
    Zhang, Jun
    Letaief, Khaled B.
    Lau, Vincent
    [J]. CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 280 - 289
  • [8] The Nonconvex Tensor Robust Principal Component Analysis Approximation Model via theWeighted lp-Norm Regularization
    Li, Minghui
    Li, Wen
    Chen, Yannan
    Xiao, Mingqing
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (03)
  • [9] VOCAL SEPARATION USING EXTENDED ROBUST PRINCIPAL COMPONENT ANALYSIS WITH SCHATTEN P/LP-NORM AND SCALE COMPRESSION
    Jeong, Il-Young
    Lee, Kyogu
    [J]. 2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,
  • [10] Block Principle Component Analysis with Lp-norm for Robust and Sparse Modelling
    唐肝翌
    卢桂馥
    [J]. Journal of Shanghai Jiaotong University(Science), 2018, 23 (03) : 398 - 403