Adaptive wavelet methods for elliptic partial differential equations with random operators

被引:8
|
作者
Gittelson, Claude Jeffrey [1 ]
机构
[1] ETH, Seminar Appl Math, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
GENERALIZED POLYNOMIAL CHAOS; APPROXIMATIONS;
D O I
10.1007/s00211-013-0572-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply adaptive wavelet methods to boundary value problems with random coefficients, discretized by wavelets in the spatial domain and tensorized polynomials in the parameter domain. Greedy algorithms control the approximate application of the fully discretized random operator, and the construction of sparse approximations to this operator. We suggest a power iteration for estimating errors induced by sparse approximations of linear operators.
引用
收藏
页码:471 / 513
页数:43
相关论文
共 50 条
  • [1] Adaptive wavelet methods for elliptic partial differential equations with random operators
    Claude Jeffrey Gittelson
    [J]. Numerische Mathematik, 2014, 126 : 471 - 513
  • [2] Discontinuous Galerkin methods for elliptic partial differential equations with random coefficients
    Liu, Kun
    Riviere, Beatrice M.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (11) : 2477 - 2490
  • [3] Adaptive quarkonial domain decomposition methods for elliptic partial differential equations
    Dahlke, Stephan
    Friedrich, Ulrich
    Keding, Philipp
    Sieber, Alexander
    Raasch, Thorsten
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 2608 - 2638
  • [4] Wavelet based multigrid methods for linear and nonlinear elliptic partial differential equations
    Avudainayagam, A
    Vani, C
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (02) : 307 - 320
  • [5] On elliptic partial differential equations with random coefficients
    Mugler, Antje
    Starkloff, Hans-Jorg
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 473 - 487
  • [6] Optimality of adaptive Galerkin methods for random parabolic partial differential equations
    Gittelson, Claude Jeffrey
    Andreev, Roman
    Schwab, Christoph
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 189 - 201
  • [7] CONVERGENCE AND COMPLEXITY OF ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
    He, Lianhua
    Zhou, Aihui
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (04) : 615 - 640
  • [8] FULLY ADAPTIVE NEWTON-GALERKIN METHODS FOR SEMILINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
    Amrein, Mario
    Wihler, Thomas P.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (04): : A1637 - A1657
  • [9] Numerical Methods for Elliptic and Parabolic Partial Differential Equations
    Schulz, Volker H.
    Kirby, Robert C.
    [J]. SIAM REVIEW, 2023, 65 (01) : 317 - +
  • [10] Multilevel Schwarz methods for elliptic partial differential equations
    Migliorati, Giovanni
    Quarteroni, Alfio
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (25-28) : 2282 - 2296