A Linear-Time Streaming Algorithm for Cardinality-Constrained Maximizing Monotone Non-submodular Set Functions

被引:0
|
作者
Cui, Min [1 ]
Du, Donglei [2 ]
Gai, Ling [3 ]
Yang, Ruiqi [4 ]
机构
[1] Beijing Univ Technol, Dept Operat Res & Informat Engn, 100 Pingleyuan, Beijing 100124, Peoples R China
[2] Univ New Brunswick, Fac Management, Fredericton, NB E3B 5A3, Canada
[3] Donghua Univ, Glorious Sun Sch Business & Management, Shanghai 200051, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Non-submodular; Streaming; Linear-time; Cardinality-constrained;
D O I
10.1007/978-3-030-92681-6_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nowadays, massive amounts of data are growing at a rapid rate every moment. If data can be processed and analyzed promptly as they arrive, they can bring huge added values to the society. In this paper, we consider the problem of maximizing a monotone non-submodular function subject to a cardinality constraint under the streaming setting and present a linear-time single-pass deterministic algorithm for this problem. We analyze the algorithm using the parameter of the generic submodularity ratio gamma to achieve an approximation ratio of [gamma(4)/c(1+gamma+gamma(2)+gamma(3)) - epsilon] for any epsilon >= 0 with the query complexity [n/c] + c, and the memory complexity is O(ck log(k) log(1/epsilon)), where c is a positive integer. When gamma = 1, the algorithm achieves the same ratio for the submodular version of the problem with the matching query complexity and memory complexity.
引用
收藏
页码:96 / 110
页数:15
相关论文
共 17 条
  • [1] Improved Linear-Time Streaming Algorithms for Maximizing Monotone Cardinality-Constrained Set Functions
    Cui, Min
    Du, Donglei
    Gai, Ling
    Yang, Ruiqi
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024, 35 (06) : 631 - 650
  • [2] Streaming algorithm for maximizing a monotone non-submodular function underd-knapsack constraint
    Jiang, Yanjun
    Wang, Yishui
    Xu, Dachuan
    Yang, Ruiqi
    Zhang, Yong
    [J]. OPTIMIZATION LETTERS, 2020, 14 (05) : 1235 - 1248
  • [4] Streaming Algorithms for Maximizing Non-submodular Functions on the Integer Lattice
    Liu, Bin
    Chen, Zihan
    Wang, Huijuan
    Wu, Weili
    [J]. COMPUTATIONAL DATA AND SOCIAL NETWORKS, CSONET 2021, 2021, 13116 : 3 - 14
  • [5] Streaming algorithm for maximizing a monotone non-submodular function under d-knapsack constraint
    Yanjun Jiang
    Yishui Wang
    Dachuan Xu
    Ruiqi Yang
    Yong Zhang
    [J]. Optimization Letters, 2020, 14 : 1235 - 1248
  • [6] Approximation algorithm of maximizing non-monotone non-submodular functions under knapsack constraint
    Shi, Yishuo
    Lai, Xiaoyan
    [J]. THEORETICAL COMPUTER SCIENCE, 2024, 990
  • [7] Streaming Algorithms for Maximizing Monotone DR-Submodular Functions with a Cardinality Constraint on the Integer Lattice
    Zhang, Zhenning
    Guo, Longkun
    Wang, Yishui
    Xu, Dachuan
    Zhang, Dongmei
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2021, 38 (05)
  • [8] An optimal streaming algorithm for non-submodular functions maximization on the integer lattice
    Bin Liu
    Zihan Chen
    Huijuan Wang
    Weili Wu
    [J]. Journal of Combinatorial Optimization, 2023, 45
  • [9] An optimal streaming algorithm for non-submodular functions maximization on the integer lattice
    Liu, Bin
    Chen, Zihan
    Wang, Huijuan
    Wu, Weili
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (01)
  • [10] On Maximizing Sums of Non-monotone Submodular and Linear Functions
    Qi, Benjamin
    [J]. ALGORITHMICA, 2024, 86 (04) : 1080 - 1134