We study the motion of an incompressible, inviscid two-dimensional fluid in a rotating frame of reference. There the fluid experiences a Coriolis force, which we assume to be linearly dependent on one of the coordinates. This is a common approximation in geophysical fluid dynamics and is referred to as the beta-plane approximation. In vorticity formulation, the model we consider is then given by the Euler equation with the addition of a linear anisotropic, nondegenerate, dispersive term. This allows us to treat the problem as a quasilinear dispersive equation whose linear solutions exhibit decay in time at a critical rate. Our main result is the global stability and decay to equilibrium of sufficiently small and localized solutions. Key aspects of the proof are the exploitation of a "double null form" that annihilates interactions between spatially coherent waves and a lemma for Fourier integral operators which allows us to control a strong weighted norm.