Swapping colored tokens on graphs

被引:6
|
作者
Yamanaka, Katsuhisa [1 ]
Horiyama, Takashi [2 ]
Keil, J. Mark [3 ]
Kirkpatrick, David [4 ]
Otachi, Yota [5 ]
Saitoh, Toshiki [6 ]
Uehara, Ryuhei [7 ]
Uno, Yushi [8 ]
机构
[1] Iwate Univ, Morioka, Iwate, Japan
[2] Saitama Univ, Saitama, Japan
[3] Univ Saskatchewan, Saskatoon, SK, Canada
[4] Univ British Columbia, Vancouver, BC, Canada
[5] Kumamoto Univ, Kumamoto, Japan
[6] Kyushu Inst Technol, Kitakyushu, Fukuoka, Japan
[7] Japan Adv Inst Sci & Technol, Nomi, Ishikawa, Japan
[8] Osaka Prefecture Univ, Sakai, Osaka, Japan
关键词
Computational complexity; NP-completeness; Fixed-parameter algorithm; Token swapping; Colored token swapping; COMPLEXITY;
D O I
10.1016/j.tcs.2018.03.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the computational complexity of the following problem. We are given a graph in which each vertex has an initial and a target color. Each pair of adjacent vertices can swap their current colors. Our goal is to perform the minimum number of swaps so that the current and target colors agree at each vertex. When the colors are chosen from {1, 2, ..., c}, we call this problem C-COLORED TOKEN SWAPPING since the current color of a vertex can be seen as a colored token placed on the vertex. We show that c-COLORED TOKEN SWAPPING is NP-complete for c = 3 even if input graphs are restricted to connected planar bipartite graphs of maximum degree 3. We then show that 2-COLORED TOKEN SWAPPING can be solved in polynomial time for general graphs and in linear time for trees. Besides, we show that, the problem for complete graphs is fixed-parameter tractable when parameterized by the number of colors, while it is known to be NP-complete when the number of colors is unbounded. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] Sequentially Swapping Colored Tokens on Graphs
    Yamanaka, Katsuhisa
    Demaine, Erik D.
    Horiyama, Takashi
    Kawamura, Akitoshi
    Nakano, Shin-ichi
    Okamoto, Yoshio
    Saitoh, Toshiki
    Suzuki, Akira
    Uehara, Ryuhei
    Uno, Takeaki
    WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2017, 2017, 10167 : 435 - 447
  • [2] Sequentially swapping colored tokens on graphs
    Yamanaka K.
    Demaine E.D.
    Horiyama T.
    Kawamura A.
    Nakano S.-I.
    Okamoto Y.
    Saitoh T.
    Suzuki A.
    Uehara R.
    Uno T.
    Journal of Graph Algorithms and Applications, 2019, 23 (01) : 3 - 27
  • [3] Swapping Labeled Tokens on Graphs
    Yamanaka, Katsuhisa
    Demaine, Erik D.
    Ito, Takehiro
    Kawahara, Jun
    Kiyomi, Masashi
    Okamoto, Yoshio
    Saitoh, Toshiki
    Suzuki, Akira
    Uchizawa, Kei
    Uno, Takeaki
    FUN WITH ALGORITHMS, 2014, 8496 : 364 - 375
  • [4] Swapping labeled tokens on graphs
    Yamanaka, Katsuhisa
    Demaine, Erik D.
    Ito, Takehiro
    Kawahara, Jun
    Kiyomi, Masashi
    Okamoto, Yoshio
    Saitoh, Toshiki
    Suzuki, Akira
    Uchizawa, Kei
    Uno, Takeaki
    THEORETICAL COMPUTER SCIENCE, 2015, 586 : 81 - 94
  • [5] AUTOMATING THE CONVERSION OF COLORED PETRI NETS WITH QUALITATIVE TOKENS INTO COLORED PETRI NETS WITH QUANTITATIVE TOKENS
    Hlomozda, D. K.
    Glybovets, M. M.
    Maksymets, O. M.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2018, 54 (04) : 650 - 661
  • [6] Sequentially Swapping Tokens: Further on Graph Classes
    Kiya, Hironori
    Okada, Yuto
    Ono, Hirotaka
    Otachi, Yota
    SOFSEM 2023: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2023, 13878 : 222 - 235
  • [7] Sliding Tokens on Block Graphs
    Hoang, Duc A.
    Fox-Epstein, Eli
    Uehara, Ryuhei
    WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2017, 2017, 10167 : 460 - 471
  • [8] On semantic aspects of dataflow computations with colored tokens
    Virbitskaite, IB
    Votintseva, AV
    Shklyaev, DA
    PROGRAMMING AND COMPUTER SOFTWARE, 1996, 22 (03) : 113 - 125
  • [9] EMBEDDING GRAPHS INTO COLORED GRAPHS
    HAJNAL, A
    KOMJATH, P
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 307 (01) : 395 - 409
  • [10] Colored homomorphisms of colored mixed graphs
    Nesetril, J
    Raspaud, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 80 (01) : 147 - 155