Composite Tissue Engineering on Polycaprolactone Nanofiber Scaffolds

被引:58
|
作者
Reed, Courtney R. [1 ]
Han, Li [2 ]
Andrady, Anthony [2 ]
Caballero, Montserrat [1 ]
Jack, Megan C. [3 ]
Collins, James B. [4 ]
Saba, Salim C. [1 ]
Loboa, Elizabeth G. [5 ]
Cairns, Bruce A. [3 ]
van Aalst, John A. [1 ]
机构
[1] Univ N Carolina, Div Plast Surg, Chapel Hill, NC 27599 USA
[2] Res Triangle Int, Engn Unit, Chapel Hill, NC USA
[3] Univ N Carolina, Dept Surg, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Sch Med, Chapel Hill, NC 27599 USA
[5] Univ N Carolina, N Carolina State Univ, Joint Dept Bioengn, Chapel Hill, NC 27599 USA
关键词
nanofiber scaffolds; nanotechnology; composite tissue engineering; keratinocytes; fibroblasts; osteoinduction; fat-derived stem cells; periosteum; periosteal cells; NORMAL HUMAN KERATINOCYTES; CULTURED HUMAN EPITHELIUM; GROWTH-FACTOR EXPRESSION; BLOOD STEM-CELLS; IN-VITRO; OSTEOGENIC DIFFERENTIATION; ORGANOTYPIC CULTURES; PERIOSTEAL CELLS; BONE; ANGIOGENESIS;
D O I
10.1097/SAP.0b013e31818e48bf
中图分类号
R61 [外科手术学];
学科分类号
摘要
Tissue engineering has largely focused on single tissue-type reconstruction (such as bone): however, the basic unit Of healing in any clinically relevant scenario is a compound tissue type (such Lis bone, periosteum, and skin). Nanofibers are submicron fibrils that mimic the extracellular matrix, promoting cellular adhesion, proliferation, and migration. Stern cell manipulation on nanofiber scaffolds holds significant promise for future tissue engineering. This work represents our initial efforts to create the building blocks for composite tissue reflecting the basic unit of healing, Polycaprolactone (PCL) nanofibers were electrospun using standard techniques. Human foreskin fibroblasts, murine keratinocytes, and periosteal cells (4-mm punch biopsy) harvested front children undergoing palate repair were grown in appropriate media oil PCL nanofibers. Human fat-derived mesenchymal stem cells were osteoinduced on PCL nanofibers. Cell growth was assessed with fluorescent viability staining; cocultured cells were differentiated using antibodies to fibroblast- and keratinocyte-specific Surface markers. Osteoinduction was assessed with Alizarin red S. PCL nanofiber scaffolds supported robust growth of fibroblasts, keratinocytes. and periosteal cells. Cocultured periosteal cells (with fibroblasts) and keratinocytes showed improved longevity of the keratinocytes, though growth of these cell types was randomly distributed throughout the scaffold. Robust osteoinduction was noted on PCL nanofibers. Composite tissue engineering using PCL nanofiber scaffolds is possible, though the major obstacles to the trilaminar construct are maintaining an appropriate interface between the tissue types and neovascularization of the composite structure.
引用
收藏
页码:505 / 512
页数:8
相关论文
共 50 条
  • [1] Electrospinning of polyvinylalcohol–polycaprolactone composite scaffolds for tissue engineering applications
    Subramanian Uma Maheshwari
    Samuel Vasanth Kumar
    Naveen Nagiah
    Tiruchirapally Sivagnanam Uma
    [J]. Polymer Bulletin, 2013, 70 : 2995 - 3010
  • [2] Magnetic composite scaffolds of polycaprolactone/nFeHA, for bone-tissue engineering
    Diaz, E.
    Valle, M. B.
    Barandiaran, J. M.
    [J]. INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2016, 65 (12) : 593 - 600
  • [3] Electrospinning of polyvinylalcohol-polycaprolactone composite scaffolds for tissue engineering applications
    Maheshwari, Subramanian Uma
    Kumar, Samuel Vasanth
    Nagiah, Naveen
    Uma, Tiruchirapally Sivagnanam
    [J]. POLYMER BULLETIN, 2013, 70 (11) : 2995 - 3010
  • [4] Flexible Polycaprolactone and Polycaprolactone/Graphene Scaffolds for Tissue Engineering
    Evlashin, Stanislav
    Dyakonov, Pavel
    Tarkhov, Mikhail
    Dagesyan, Sarkis
    Rodionov, Sergey
    Shpichka, Anastasia
    Kostenko, Mikhail
    Konev, Stepan
    Sergeichev, Ivan
    Timashev, Petr
    Akhatov, Iskander
    [J]. MATERIALS, 2019, 12 (18)
  • [5] ELECTROSPUN POLYCAPROLACTONE-NANODIAMOND COMPOSITE SCAFFOLDS FOR BONE TISSUE ENGINEERING
    Salaam, Amanee D.
    Dean, Derrick
    [J]. NEMB2010: PROCEEDINGS OF THE ASME FIRST GLOBAL CONGRESS ON NANOENGINEERING FOR MEDICINE AND BIOLOGY - 2010, 2010, : 367 - 370
  • [6] Modified Bi-Layered Polycaprolactone Nanofiber Scaffolds for Vascular Tissue Engineering Applications
    Fouad, H.
    Al-Shammari, Basheer A.
    AlRez, Mohammed Fayez
    Al-Fotawi, Randa
    Mahmood, Amer
    [J]. NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2019, 11 (01) : 1 - 10
  • [7] Neural tissue engineering: nanofiber-hydrogel based composite scaffolds
    Shelke, Namdev B.
    Lee, Paul
    Anderson, Matthew
    Mistry, Nikhil
    Nagarale, Rajaram K.
    Ma, Xin-Ming
    Yu, Xiaojun
    Kumbar, Sangamesh G.
    [J]. POLYMERS FOR ADVANCED TECHNOLOGIES, 2016, 27 (01) : 42 - 51
  • [8] Precision extruding deposition of composite polycaprolactone/hydroxyapatite scaffolds for bone tissue engineering
    Shor, L
    Darling, A
    Starly, B
    Sun, W
    Güçeri, S
    [J]. 2005 IEEE 31ST ANNUAL NORTHEAST BIOENGINEERING CONFERENCE, 2005, : 172 - 173
  • [9] Gradient Nanofiber Scaffolds for Tissue Engineering
    Seidi, Azadeh
    Sampathkumar, Kaarunya
    Sriyastaya, Alok
    Ramakrishna, Seeram
    Rannalingam, Murugan
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (07) : 4647 - 4655
  • [10] Electrospun polycaprolactone scaffolds for tissue engineering: a review
    Janmohammadi, M.
    Nourbakhsh, M. S.
    [J]. INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2019, 68 (09) : 527 - 539