FE modelling of a boundary layer corrector for composites using the homogenization theory

被引:12
|
作者
Lefik, M [1 ]
Schrefler, B [1 ]
机构
[1] UNIV PADUA,PADUA,ITALY
关键词
finite element method; homogenization; modelling;
D O I
10.1108/02644409610128391
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Using finite element (FE) method corrects the microstress field resulting from the theory of homogenization in the region of composite in vicinity of the boundary. Obtains the corrected microstress field via an unsmearing procedure based on the known global solution and local peturbation. Analyses two examples: near a free boundary and next to a constrained border. FE models are constructed using both commercial FE code and the authors' program for homogenization with some interfacing procedures. Shows qualitative results oi computations and estimates influence on the microstress description of the local perturbation near the boundary.
引用
收藏
页码:31 / &
页数:13
相关论文
共 50 条
  • [1] Boundary layer effect at the edge of fibrous composites using homogenization theory
    Koley, S.
    Mohite, P. M.
    Upadhyay, C. S.
    COMPOSITES PART B-ENGINEERING, 2019, 173
  • [2] Study of boundary layer effects at ply interfaces of laminated composites using homogenization theory
    Koley, S.
    Upadhyay, C. S.
    Mohite, P. M.
    COMPOSITE STRUCTURES, 2022, 286
  • [3] A general boundary layer corrector for the asymptotic homogenization of elastic linear composite structures
    Fergoug, Mouad
    Parret-Freaud, Augustin
    Feld, Nicolas
    Marchand, Basile
    Forest, Samuel
    COMPOSITE STRUCTURES, 2022, 285
  • [4] On multiscale homogenization problems in boundary layer theory
    Amirat, Youcef
    Chechkin, Gregory A.
    Romanov, Maxim
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (03): : 475 - 502
  • [5] On multiscale homogenization problems in boundary layer theory
    Youcef Amirat
    Gregory A. Chechkin
    Maxim Romanov
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 475 - 502
  • [6] HOMOGENIZATION AND CORRECTOR THEORY FOR LINEAR TRANSPORT IN RANDOM MEDIA
    Bal, Guillaume
    Jing, Wenjia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) : 1311 - 1343
  • [7] AN EMBEDDED CORRECTOR PROBLEM FOR HOMOGENIZATION. PART I: THEORY
    Cances, Eric
    Ehrlacher, Virginie
    Legoll, Frederic
    Stamm, Benjamin
    Xiang, Shuyang
    MULTISCALE MODELING & SIMULATION, 2020, 18 (03): : 1179 - 1209
  • [8] Homogenization of streaks in a laminar boundary layer
    Puckert, Dominik K.
    Wu, Yongxiang
    Rist, Ulrich
    EXPERIMENTS IN FLUIDS, 2020, 61 (05)
  • [9] Homogenization of streaks in a laminar boundary layer
    Dominik K. Puckert
    Yongxiang Wu
    Ulrich Rist
    Experiments in Fluids, 2020, 61
  • [10] Boundary layer tails in periodic homogenization
    Allaire, Grégoire
    Amar, Micol
    ESAIM Control, Optimisation and Calculus of Variations, 1999, (04): : 209 - 243