Comparison of low discrepancy mesh methods for pricing Bermudan options under a Levy process

被引:0
|
作者
Imai, Junichi [1 ]
机构
[1] Keio Univ, Fac Sci & Technol, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
基金
日本学术振兴会;
关键词
Bermudan option; Low discrepancy mesh method; Levy process; Quasi-Monte Carlo; VALUATION;
D O I
10.1016/j.matcom.2014.02.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper discusses simulation methods for pricing Bermudan options under an exponential Levy process. We investigate an efficient simulation approach that can generate sample trajectories from an explicitly known density function under an exponential Levy process. The paper examines the impact of the choice of mesh density for sampling trajectories on the efficiency of both the low discrepancy and stochastic mesh methods. Three mesh densities are introduced and compared, that is, average, marginal and squared average. Numerical experiments show that the squared average density is the best choice for the mesh density function in pricing Bermudan put options under an exponential normal inverse Gaussian Levy process. The low discrepancy mesh method using the squared average density can provide unbiased estimates with a smaller number of mesh points. Furthermore, it can provide estimates with the smallest standard error. (C) 2014 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 71
页数:18
相关论文
共 50 条
  • [1] Pricing Bermudan options using low-discrepancy mesh methods
    Boyle, Phelim P.
    Kolkiewicz, Adam W.
    Tan, Ken Seng
    [J]. QUANTITATIVE FINANCE, 2013, 13 (06) : 841 - 860
  • [2] Pricing Bermudan Options in Levy Process Models
    Feng, Liming
    Lin, Xiong
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2013, 4 (01): : 474 - 493
  • [3] Pricing Bermudan options under local Levy models with default
    Borovykh, A.
    Pascucci, A.
    Oosterlee, C. W.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 929 - 953
  • [4] Pricing Bermudan Options via Multilevel Approximation Methods
    Belomestny, Denis
    Dickmann, Fabian
    Nagapetyan, Tigran
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2015, 6 (01): : 448 - 466
  • [5] Pricing Vulnerable European Options under Levy Process with Stochastic Volatility
    Ma, Chaoqun
    Yue, Shengjie
    Ren, Yishuai
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [6] PRICING BARRIER AND BERMUDAN STYLE OPTIONS UNDER TIME-CHANGED LEVY PROCESSES: FAST HILBERT TRANSFORM APPROACH
    Zeng, Pingping
    Kwok, Yue Kuen
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (03): : B450 - B485
  • [7] Regression methods in pricing American and Bermudan options using consumption processes
    Belomestny, Denis
    Milstein, Grigori
    Spokoiny, Vladimir
    [J]. QUANTITATIVE FINANCE, 2009, 9 (03) : 315 - 327
  • [8] Pricing Bermudan options under Merton jump-diffusion asset dynamics
    Cong, F.
    Oosterlee, C. W.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (12) : 2406 - 2432
  • [9] A FINITE DIFFERENCE METHOD FOR PRICING EUROPEAN AND AMERICAN OPTIONS UNDER A GEOMETRIC LEVY PROCESS
    Chen, Wen
    Wang, Song
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2015, 11 (01) : 241 - 264
  • [10] Pricing foreign equity options under Levy processes
    Huang, SC
    Hung, MW
    [J]. JOURNAL OF FUTURES MARKETS, 2005, 25 (10) : 917 - 944