Doped calcium manganites for advanced high-temperature thermochemical energy storage

被引:81
|
作者
Babiniec, Sean M. [1 ]
Coker, Eric N. [2 ]
Miller, James E. [2 ]
Ambrosini, Andrea [1 ]
机构
[1] Sandia Natl Labs, Mat Devices & Energy Technol, POB 5800,MS 0734, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE,St 100, Albuquerque, NM 87106 USA
关键词
thermochemical energy storage; concentrating solar power; perovskite; thermogravimetric analysis; air Brayton; NONSTOICHIOMETRY; CYCLES; MN; FE;
D O I
10.1002/er.3467
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Developing efficient thermal storage for concentrating solar power plants is essential to reducing the cost of generated electricity, extending or shifting the hours of operation, and facilitating renewable penetration into the grid. Perovskite materials of the CaBxMn1-xO3-delta family, where B = Al or Ti, promise improvements in cost and energy storage density over other perovskites currently under investigation. Thermogravimetric analysis of the thermal reduction and reoxidation of these materials was used to extract equilibrium thermodynamic parameters. The results demonstrate that these novel thermochemical energy storage media display the highest reaction enthalpy capacity for perovskites reported to date, with a reaction enthalpy of 390 kJ/kg, a 56% increase over previously reported compositions. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:280 / 284
页数:5
相关论文
共 50 条
  • [1] Redox cycles with doped calcium manganites for thermochemical energy storage to 1000 °C
    Imponenti, Luca
    Albrecht, Kevin J.
    Kharait, Rounak
    Sanders, Michael D.
    Jackson, Gregory S.
    [J]. APPLIED ENERGY, 2018, 230 : 1 - 18
  • [2] Modified Calcium Manganites for Thermochemical Energy Storage Applications
    Miller, James E.
    Babiniec, Sean M.
    Coker, Eric N.
    Loutzenhiser, Peter G.
    Stechel, Ellen B.
    Ambrosini, Andrea
    [J]. FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [3] Thermochemical energy storage in strontium-doped calcium manganites for concentrating solar power applications
    Imponenti, Luca
    Albrecht, Kevin J.
    Wands, Jake W.
    Sanders, Michael D.
    Jackson, Gregory S.
    [J]. SOLAR ENERGY, 2017, 151 : 1 - 13
  • [4] High-temperature thermochemical energy storage using metal hydrides: Destabilisation of calcium hydride with silicon
    Griffond, Arnaud C. M.
    Sofianos, M. Veronica
    Sheppard, Drew A.
    Humphries, Terry D.
    Sargent, Anna-Lisa
    Dornheim, Martin
    Aguey-Zinsou, Kondo-Francois
    Buckley, Craig E.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 858
  • [5] High-Temperature Calcium-Based Thermochemical Energy Storage System for Use with CSP Facilities
    Muto, Andrew
    McCabe, Kevin
    Real, Daniel
    [J]. INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2017), 2018, 2033
  • [6] Composite material for high-temperature thermochemical energy storage using calcium hydroxide and ceramic foam
    Funayama, Shigehiko
    Takasu, Hiroki
    Zamengo, Massimiliano
    Kariya, Jun
    Kim, Seon Tae
    Kato, Yukitaka
    [J]. ENERGY STORAGE, 2019, 1 (02)
  • [7] State of the art on the high-temperature thermochemical energy storage systems
    Chen, Xiaoyi
    Zhang, Zhen
    Qi, Chonggang
    Ling, Xiang
    Peng, Hao
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2018, 177 : 792 - 815
  • [8] Application of lithium orthosilicate for high-temperature thermochemical energy storage
    Takasu, Hiroki
    Ryu, Junichi
    Kato, Yukitaka
    [J]. APPLIED ENERGY, 2017, 193 : 74 - 83
  • [9] Solar combined cycle with high-temperature thermochemical energy storage
    Ortiz, C.
    Tejada, C.
    Chacartegui, R.
    Bravo, R.
    Carro, A.
    Valverde, J. M.
    Valverde, J.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2021, 241
  • [10] High-temperature chemistry of doped lanthanum manganites
    Slobodin, BV
    Surat, LL
    Vladimirova, EV
    [J]. RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2001, 46 : S43 - S65