Pseudo-Differential Operators on Zn with Applications to Discrete Fractional Integral Operators

被引:0
|
作者
Cardona, Duvan [1 ]
机构
[1] Pontificia Univ Javeriana, Dept Math, Bogota, Colombia
关键词
Pseudo-differential operators; Calderon-Vaillancourt theorem; Gohberg lemma; Discrete fractional integral operator; Hypothesis-K-*; Waring's problem; ESSENTIAL SPECTRUM; HARMONIC-ANALYSIS; ANALOGS; BOUNDEDNESS;
D O I
10.1007/s41980-018-00195-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript we provide necessary and sufficient conditions for the weak( 1, p) boundedness, 1 < p < 8, of discrete Fourier multipliers ( Fourier multipliers on Zn). Our main goal was to apply the results obtained to discrete fractional integral operators. Discrete versions of the Calderon- Vaillancourt theorem and the Gohberg lemma also are proved.
引用
收藏
页码:1227 / 1241
页数:15
相关论文
共 50 条
  • [1] Discrete Pseudo-differential Operators and Applications to Numerical Schemes
    Faou, Erwan
    Grebert, Benoit
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024, 25 (2) : 587 - 630
  • [2] On Discrete Pseudo-Differential Operators and Equations
    Vasilyev, Vladimir
    FILOMAT, 2018, 32 (03) : 975 - 984
  • [3] Weighted periodic and discrete pseudo-differential Operators
    Dasgupta, Aparajita
    Mohan, Lalit
    Mondal, Shyam Swarup
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (03): : 427 - 454
  • [4] Dixmier traces for discrete pseudo-differential operators
    Cardona, Duvan
    del Corral, Cesar
    Kumar, Vishvesh
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (02) : 647 - 656
  • [5] Dixmier traces for discrete pseudo-differential operators
    Duván Cardona
    César del Corral
    Vishvesh Kumar
    Journal of Pseudo-Differential Operators and Applications, 2020, 11 : 647 - 656
  • [6] Discrete pseudo-differential operators in hypercomplex analysis
    Cerejeiras, Paula
    Kaehler, Uwe
    Lucas, Simao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (10) : 8025 - 8041
  • [7] Difference equations and pseudo-differential operators on Zn
    Botchway, Linda N. A.
    Kibiti, P. Gael
    Ruzhansky, Michael
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (11)
  • [8] PSEUDO-DIFFERENTIAL OPERATORS
    HORMANDE.L
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1965, 18 (03) : 501 - &
  • [9] Pseudo-Differential Operators
    Yuan, Wen
    Sickel, Winfried
    Yang, Dachun
    MORREY AND CAMPANATO MEET BESOV, LIZORKIN AND TRIEBEL, 2010, 2005 : 137 - 146
  • [10] PSEUDO-DIFFERENTIAL OPERATORS
    VAROPOULOS, NT
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (11): : 769 - 774