A Conductive Self-Healing Double Network Hydrogel with Toughness and Force Sensitivity

被引:49
|
作者
Liu, Shunli [1 ]
Li, Kewen [1 ]
Hussain, Imtiaz [1 ]
Oderinde, Olayinka [1 ]
Yao, Fang [1 ]
Zhang, Jiuyang [1 ]
Fu, Guodong [1 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, Nanjing 211189, Jiangsu, Peoples R China
关键词
gels; iron; mechanical properties; noncovalent interactions; self-healing; ELECTRONIC SKIN; GRAPHENE OXIDE; HIGH-STRENGTH; COMPOSITE; BONDS;
D O I
10.1002/chem.201800259
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mechanically tough and electrically conductive self-healing hydrogels may have broad applications in wearable electronics, health-monitoring systems, and smart robotics in the following years. Herein, a new design strategy is proposed to synthesize a dual physical cross-linked polyethylene glycol/poly(acrylic acid) (PEG/PAA) double network hydrogel, consisting of ferric ion cross-linked linear chain extensions of PEG (2,6-pyridinedicarbonyl moieties incorporated into the PEG backbone, PEG-H(2)pdca) as the first physical network and a PAA-Fe3+ gel as the second physical network. Metal-ion coordination and the double network structure enable the double network hydrogel to withstand up to 0.4 MPa tensile stress and 1560% elongation at breakage; the healing efficiency reaches 96.8% in 12 h. In addition, due to dynamic ion transfer in the network, the resulting hydrogels exhibit controllable conductivity (0.0026-0.0061 S cm(-1)) and stretching sensitivity. These functional self-healing hydrogels have potential applications in electronic skin. It is envisioned that this strategy can also be employed to prepare other high-performance, multifunctional polymers.
引用
收藏
页码:6632 / 6638
页数:7
相关论文
共 50 条
  • [1] Self-healing, antibacterial, and conductive double network hydrogel for strain sensors
    Liu, Chenglu
    Xu, Zhengyan
    Chandrasekaran, Sundaram
    Liu, Yongping
    Wu, Mengyang
    [J]. CARBOHYDRATE POLYMERS, 2023, 303
  • [2] Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties
    Liu, Shunli
    Oderinde, Olayinka
    Hussain, Imtiaz
    Yao, Fang
    Fu, Guodong
    [J]. POLYMER, 2018, 144 : 111 - 120
  • [3] Conductive double-crosslinked network hydrogel with superior stretchability and self-healing ability
    Wang, Shuai
    Dai, Shengping
    Yan, Hao
    Ding, Jianning
    Yuan, Ningyi
    [J]. MATERIALS RESEARCH EXPRESS, 2019, 6 (10)
  • [4] Template method for dual network self-healing hydrogel with conductive property
    Kang, Mengmeng
    Liu, Shunli
    Oderinde, Olayinka
    Yao, Fang
    Fu, Guodong
    Zhang, Zhihong
    [J]. MATERIALS & DESIGN, 2018, 148 : 96 - 103
  • [5] Characterization of stress softening and self-healing in a double network hydrogel
    Kulcu, Ismail Dogan
    [J]. RESULTS IN PHYSICS, 2019, 12 : 1826 - 1833
  • [6] Recoverable and Self-Healing Double Network Hydrogel Based on κ-Carrageenan
    Liu, Sijun
    Li, Lin
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (43) : 29749 - 29758
  • [7] Conductive hydrogel composites with autonomous self-healing properties
    Li, Xiaohui
    Huang, Xia
    Mutlu, Hatice
    Malik, Sharali
    Theato, Patrick
    [J]. SOFT MATTER, 2020, 16 (48) : 10969 - 10976
  • [8] Conductive and self-healing hydrogel for flexible electrochemiluminescence sensor
    Xuejiao Liu
    Yang Bai
    Xiaoxiao Zhao
    Jun Chen
    Xu Chen
    Wensheng Yang
    [J]. Microchimica Acta, 2023, 190
  • [9] Conductive and self-healing hydrogel for flexible electrochemiluminescence sensor
    Liu, Xuejiao
    Bai, Yang
    Zhao, Xiaoxiao
    Chen, Jun
    Chen, Xu
    Yang, Wensheng
    [J]. MICROCHIMICA ACTA, 2023, 190 (04)
  • [10] Large strain, tissue-like and self-healing conductive double-network hydrogel for underwater information transmission
    Liu, Chunlin
    Mao, Yukun
    Jiang, Le
    Hu, Qin
    Zhang, Yingge
    Zhao, Fenglin
    Zhang, Enchong
    Sun, Xiaodan
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 482