Transantarctic Mountain microtektites: Geochemical affinity with Australasian microtektites

被引:48
|
作者
Folco, L. [1 ]
D'Orazio, M. [2 ]
Tiepolo, M. [3 ]
Tonarini, S. [4 ]
Ottolini, L. [3 ]
Perchiazzi, N. [2 ]
Rochette, P. [5 ]
Glass, B. P. [6 ]
机构
[1] Univ Siena, Museo Nazl Antartide, I-53100 Siena, Italy
[2] Univ Pisa, Dipartimento Sci Terra, I-56126 Pisa, Italy
[3] CNR, Ist Geosci & Georisorse, Unita Pavia, I-27100 Pavia, Italy
[4] CNR, Ist Geosci & Georisorse, Unita Pisa, I-56124 Pisa, Italy
[5] Aix Marseille Univ, CEREGE, CNRS, F-13545 Aix En Provence 4, France
[6] Univ Delaware, Dept Geol Sci, Newark, DE 19716 USA
关键词
NORTHERN VICTORIA LAND; ION MASS-SPECTROMETRY; SOUTH CHINA SEA; FRONTIER MOUNTAIN; TARGET MATERIALS; IMPACT GLASSES; SOURCE CRATER; STREWN-FIELD; TEKTITES; CONSTRAINTS;
D O I
10.1016/j.gca.2009.03.021
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We extended the petrographic and geochemical dataset for the recently discovered Transantarctic Mountain microtektites in order to check our previous claim that they are related to the Australasian strewn field. Based on color and composition, the 465 microtektites so far identified include two groups of transparent glass spheres less than ca. 800 mu m in diameter: the most abundant pale-yellow, or normal, microtektites, and the rare pale-green, or high-Mg, microtektites. The major element composition of normal microtektites determined through electron microprobe analysis is characterized by high contents of silica (SiO(2) = 71.5 +/- 3.6 (1 sigma) wt%) and alumina (Al(2)O(3) = 15.5 +/- 2.2 (1 sigma) wt%), low total alkali element contents (0.50-1.85 wt%), and MgO abundances <6 wt%. The high-Mg microtektites have a distinctly higher MgO content >10 wt%. Transantarctic Mountain microtektites contain rare silica-rich (up to 93 wt% SiO(2)) glassy inclusions similar to those found in two Australasian microtektites analyzed here for comparison. These inclusions are interpreted as partially digested, lechatelieritelike inclusions typically found in tektites and microtektites. The major and trace element (by laser ablation - inductively coupled plasma - mass spectrometry) abundance pattern of the Transantarctic Mountain microtektites matches the average upper continental crust composition for most elements. Major deviations include a strong to moderate depletion in volatile elements including Pb, Zn, Na, K, Rb, Sr and Cs, as a likely result of severe volatile loss during the high temperature melting and vaporization of crustal target rocks. The normal and high-Mg Transantarctic Mountain microtektites have compositions similar to the most volatile-poor normal and high-Mg Australasian microtektites reported in the literature. Their very low H(2)O and B contents (by secondary ion mass spectrometry) of 85 +/- 58 (1 sigma) mu g/g and 0.53 +/- 0.21 mu g/g, respectively, evidence the extreme volatile loss characteristically observed in tektites. The Sr and Nd isotopic compositions of multigrain samples of Transantarctic Mountain microtektites are (87)Sr/(86)Sr approximate to 0.71629 and (143)Nd/(144)Nd approximate to 0.51209, and fall into the Australasian tektite compositional field. The Nd model age calculated with respect to the chondritic uniform reservoir (CHUR) is T(CHUR)(Nd) approximate to 1.1 Ga, indicating a Meso-Proterozoic crustal source rock, as was derived for Australasian tektites as well. Coupled with the Quaternary age from the literature, the extended dataset presented in this work strengthens our previous conclusion that Transantarctic Mountain microtektites represent a major southward extension of the Australasian tektite/microtektite strewn field. Furthermore, the significant depletion in volatile elements (i.e., Pb, B, Na, K, Zn, Rb, Sr and Cs) of both normal and high-Mg Transantarctic Mountain microtektites relative to the Australasian ones provide us with further confirmation of a possible relationship between high temperature-time regimes in the microtektite-forming process and ejection distance. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3694 / 3722
页数:29
相关论文
共 50 条
  • [1] Extending searches for transantarctic mountain microtektites
    Folco, L.
    Rochette, P.
    [J]. METEORITICS & PLANETARY SCIENCE, 2008, 43 (07) : A181 - A181
  • [2] Fission track age of Transantarctic Mountain microtektites
    Folco, L.
    Bigazzi, G.
    D'Orazio, M.
    Balestrieri, M. L.
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2011, 75 (09) : 2356 - 2360
  • [3] Microtektites from the Transantarctic mountains
    Folco, L.
    Rochette, P.
    Perchiazzi, N.
    D'Orazio, M.
    Laurenzi, M. A.
    Tiepolo, M.
    [J]. METEORITICS & PLANETARY SCIENCE, 2007, 42 : A50 - A50
  • [4] A common volatilization trend in Transantarctic Mountain and Australasian microtektites: Implications for their formation model and parent crater location
    Folco, L.
    Glass, B. P.
    D'Orazio, M.
    Rochette, P.
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2010, 293 (1-2) : 135 - 139
  • [5] Microtektites from Victoria Land Transantarctic Mountains
    Folco, L.
    Rochette, P.
    Perchiazzi, N.
    D'Orazio, M.
    Laurenzi, M. A.
    Tiepolo, M.
    [J]. GEOLOGY, 2008, 36 (04) : 291 - 294
  • [6] Australasian microtektites and the stratigraphic age of the australites
    Glass, B.P.
    [J]. Bulletin of the Geological Society of America, 1978, 89 (10): : 1455 - 1458
  • [7] PHYSICAL AND CHEMICAL PROPERTIES OF AUSTRALASIAN MICROTEKTITES
    CASSIDY, WA
    GLASS, B
    HEEZEN, BC
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1969, 74 (04): : 1008 - &
  • [8] Impact microcrater morphology on Australasian microtektites
    Prasad, MS
    Khedekar, VD
    [J]. METEORITICS & PLANETARY SCIENCE, 2003, 38 (09) : 1351 - 1371
  • [9] SEARCHING FOR AN IMPACTOR SIGNATURE IN AUSTRALASIAN MICROTEKTITES
    Folco, L.
    Glass, B. P.
    D'Orazio, M.
    Gattacceca, J.
    Rochette, P.
    [J]. METEORITICS & PLANETARY SCIENCE, 2016, 51 : A260 - A260
  • [10] BERYLLIUM-10 IN AUSTRALASIAN MICROTEKTITES
    Koeberl, C.
    Nishiizumi, K.
    Caffee, M. W.
    Glass, B. P.
    [J]. METEORITICS & PLANETARY SCIENCE, 2011, 46 : A127 - A127