Parametric Properties of Semi-Nonparametric Distributions, with Applications to Option Valuation

被引:46
|
作者
Leon, Angel [1 ]
Mencia, Javier [2 ]
Sentana, Enrique [3 ]
机构
[1] Univ Alicante, Dept Econ Financiera, E-03080 Alicante, Spain
[2] Bank Spain, E-28014 Madrid, Spain
[3] CEMFI, E-28014 Madrid, Spain
关键词
Density expansions; Gram-Charlier; Kurtosis; Skewness; PERFORMANCE; ESTIMATORS; RETURNS; MOMENTS; PRICES; MODELS;
D O I
10.1198/jbes.2009.0013
中图分类号
F [经济];
学科分类号
02 ;
摘要
We derive the statistical properties of the semi-nonparametric (SNP) densities of Gallant and Nychka (1987). We show that these densities, which are always positive, are more flexible than truncated Gram-Charlier expansions with positivity restrictions. We use the SNP densities for financial derivatives valuation. We relate real and risk-neutral measures, obtain closed-form prices for European options, and analyze the semiparametric properties of our pricing model. In an empirical application to S&P500 index options, we compare our model to the standard and Practitioner's Black-Scholes formulas, truncated expansions, and the Generalized Beta and Variance Gamma models.
引用
收藏
页码:176 / 192
页数:17
相关论文
共 50 条
  • [1] Parametric and semi-nonparametric model strategies for the estimation of distributions of chemical contaminant data
    Nysen, Ruth
    Faes, Christel
    Ferrari, Pietro
    Verger, Philippe
    Aerts, Marc
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2015, 22 (02) : 423 - 444
  • [2] Semi-Parametric and Semi-Nonparametric Estimates of the Confidence Intervals of Quantiles of Physical Quantity Distributions
    V. A. Simakhin
    O. S. Cherepanov
    [J]. Russian Physics Journal, 2019, 62 : 638 - 648
  • [3] Parametric and semi-nonparametric model strategies for the estimation of distributions of chemical contaminant data
    Ruth Nysen
    Christel Faes
    Pietro Ferrari
    Philippe Verger
    Marc Aerts
    [J]. Environmental and Ecological Statistics, 2015, 22 : 423 - 444
  • [4] Semi-Parametric and Semi-Nonparametric Estimates of the Confidence Intervals of Quantiles of Physical Quantity Distributions
    Simakhin, V. A.
    Cherepanov, O. S.
    [J]. RUSSIAN PHYSICS JOURNAL, 2019, 62 (04) : 638 - 648
  • [5] A comparison of parametric, semi-nonparametric, adaptive, and nonparametric cointegration tests
    Boswijk, HP
    Lucas, A
    Taylor, N
    [J]. ADVANCES IN ECONOMETRICS, VOL 14: APPLYING KERNEL AND NONPARAMETRIC ESTIMATION TO ECONOMIC TOPICS, 2000, 14 : 25 - 47
  • [6] Parametric and semi-nonparametric estimation of willingness-to-pay in the dichotomous choice contingent valuation framework
    Crooker, JR
    Herriges, JA
    [J]. ENVIRONMENTAL & RESOURCE ECONOMICS, 2004, 27 (04): : 451 - 480
  • [7] Parametric and Semi-Nonparametric Estimation of Willingness-to-Pay in the Dichotomous Choice Contingent Valuation Framework
    John R. Crooker
    Joseph A. Herriges
    [J]. Environmental and Resource Economics, 2004, 27 : 451 - 480
  • [8] Multivariate semi-nonparametric distributions with dynamic conditional correlations
    Del Brio, Esther B.
    Niguez, Trino-Manuel
    Perote, Javier
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2011, 27 (02) : 347 - 364
  • [9] Semi-nonparametric distribution-free dichotomous choice contingent valuation
    Creel, M
    Loomis, J
    [J]. JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT, 1997, 32 (03) : 341 - 358
  • [10] Semi-nonparametric estimation of binary response models with an application to natural resource valuation
    Chen, HZ
    Randall, A
    [J]. JOURNAL OF ECONOMETRICS, 1997, 76 (1-2) : 323 - 340