Robust Visual Tracking Using Exemplar-Based Detectors

被引:17
|
作者
Gao, Changxin [1 ]
Chen, Feifei [1 ]
Yu, Jin-Gang [1 ,2 ]
Huang, Rui [1 ]
Sang, Nong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan 430074, Peoples R China
[2] Univ Nebraska, Dept Comp Sci & Engn, Lincoln, NE 68503 USA
基金
中国国家自然科学基金;
关键词
Exemplar-based detector; linear discriminant analysis (LDA); model updating; visual tracking; OBJECT TRACKING; RECOGNITION; ENSEMBLE;
D O I
10.1109/TCSVT.2015.2513700
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tracking by detection has become an attractive tracking technique, which treats tracking as an object detection problem and trains a detector to separate the target object from the background in each frame. While this strategy is effective to some extent, we argue that the task in tracking should be searching for a specific object instance instead of an object category. Based on this viewpoint, a novel framework based on object exemplar detectors is proposed for visual tracking. To build a specific and discriminative model to separate the object instance from the background, the proposed method trains an exemplar-based linear discriminant analysis (ELDA) classifier for the object exemplar, using the current tracked instance as the positive sample and massive negative samples obtained both offline and online. To improve the trackers' adaptivity, we use an ensemble of the above ELDA detectors and update them during the tracking to cover the variation in object appearance. Extensive experimental results on a large benchmark data set show that the proposed method outperforms many state-of-the-art trackers, demonstrating the effectiveness and robustness of the ELDA tracker.
引用
收藏
页码:300 / 312
页数:13
相关论文
共 50 条
  • [1] Robust hand tracking using exemplar-based correlation filters
    Sang, Nong
    Wang, Jialong
    Li, Feng
    [J]. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46 (12): : 30 - 35
  • [2] EXEMPLAR-BASED LINEAR DISCRIMINANT ANALYSIS FOR ROBUST OBJECT TRACKING
    Gao, Changxin
    Chen, Feifei
    Yu, Jin-Gang
    Huang, Rui
    Sang, Nong
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 388 - 392
  • [3] Exemplar-based human contour tracking
    Xiang, SM
    Nie, FP
    Zhang, CS
    [J]. COMPUTER VISION - ACCV 2006, PT I, 2006, 3851 : 338 - 347
  • [4] Robust Exemplar-Based Inpainting Algorithm Using Region Segmentation
    Lee, Jino
    Lee, Dong-Kyu
    Park, Rae-Hong
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2012, 58 (02) : 553 - 561
  • [5] Exemplar-based tracking and recognition of arm gestures
    Elgammal, A
    Shet, V
    Yacoob, Y
    Davis, LS
    [J]. ISPA 2003: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, PTS 1 AND 2, 2003, : 656 - 661
  • [6] Exemplar-based face and facial motion tracking
    Huang, TS
    Hong, PY
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 3600 - 3603
  • [7] ROBUST INTERNAL EXEMPLAR-BASED IMAGE ENHANCEMENT
    Xian, Yang
    Tian, Yingli
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2379 - 2383
  • [8] NOISE ROBUST EXEMPLAR-BASED CONNECTED DIGIT RECOGNITION
    Gemmeke, Jort F.
    Virtanen, Tuomas
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 4546 - 4549
  • [9] Advances in noise robust digit recognition using hybrid exemplar-based techniques
    Gemmeke, Jort F.
    Van Hamme, Hugo
    [J]. 13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 2131 - 2134
  • [10] ON EXEMPLAR-BASED EXEMPLAR REPRESENTATIONS - REPLY
    NOSOFSKY, RM
    [J]. JOURNAL OF EXPERIMENTAL PSYCHOLOGY-GENERAL, 1988, 117 (04) : 412 - 414