Delaunay triangulation programs on surface data

被引:0
|
作者
Choi, S [1 ]
Amenta, N [1 ]
机构
[1] Univ Texas, Dept Comp Sci, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Delaunay triangulation of a set of points in 3D can have size Theta(n(2)) in the worst case, but this is rarely if ever observed in practice. We compare three production-quality Delaunay triangulation programs on some 'real-world' sets of points lying on or near 2D surfaces.
引用
收藏
页码:135 / 136
页数:2
相关论文
共 50 条
  • [1] REPRESENTING STEREO DATA WITH THE DELAUNAY TRIANGULATION
    FAUGERAS, OD
    LEBRASMEHLMAN, E
    BOISSONNAT, JD
    [J]. ARTIFICIAL INTELLIGENCE, 1990, 44 (1-2) : 41 - 87
  • [2] Restricted Delaunay Triangulation for Explicit Surface Reconstruction
    Wang, Pengfei
    Wang, Zixiong
    Xin, Shiqing
    Gao, Xifeng
    Wang, Wenping
    Tu, Changhe
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (05):
  • [3] Delaunay Triangulation and Tores Triangulation
    Grigis, Alain
    [J]. GEOMETRIAE DEDICATA, 2009, 143 (01) : 81 - 88
  • [4] STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere
    Renka, RJ
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1997, 23 (03): : 416 - 434
  • [5] A Data Forwarding Scheme Based on Delaunay Triangulation for CPSs
    Luo, Junhai
    Cai, Yijun
    [J]. 2012 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING (WICOM), 2012,
  • [6] Delaunay triangulation benchmarks
    Spelic, Denis
    Novak, Franc
    Zalik, Borut
    [J]. JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2008, 59 (01): : 49 - 52
  • [7] Delaunay triangulation of surfaces
    Kucwaj, J
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 487 - 488
  • [8] PARALLELIZATION OF THE DELAUNAY TRIANGULATION
    Krybus, D.
    Patzak, B.
    [J]. ENGINEERING MECHANICS 2011, 2011, : 331 - 334
  • [9] Delaunay Triangulation of Manifolds
    Boissonnat, Jean-Daniel
    Dyer, Ramsay
    Ghosh, Arijit
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (02) : 399 - 431
  • [10] Delaunay Triangulation of Manifolds
    Jean-Daniel Boissonnat
    Ramsay Dyer
    Arijit Ghosh
    [J]. Foundations of Computational Mathematics, 2018, 18 : 399 - 431