Parallel Iterative Algorithm for Constrained Multibody Systems in Mechanics

被引:0
|
作者
Sun Wei [1 ]
Fan Xiao-guang [2 ]
机构
[1] Xijing Univ, Dept Fdn, Xian 710123, Peoples R China
[2] Air Force Engn Univ, Xian 710038, Peoples R China
关键词
Multibody Systems; Iterative Algorithm; Differential-Algebraic Equations; Constrained;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a new family of Second-order methods for solving the index-1 DAEs of motion for flexible mechanism dynamics. These methods, which extend the a-methods for ODEs of structural dynamics to DAEsConvergence and stability is given and verifies that the DAEs a-methods introduce no addition oscillations and preserve the stability of the underlying ODEs. Convergence of the Newton iteration, which can be a source of difficulty in solving nonliner oscillatory systems with large stepsizes, is achieved via a coordinate-split modification to the Newton iteration.
引用
收藏
页码:2434 / 2437
页数:4
相关论文
共 50 条
  • [1] NONLINEAR AND ITERATIVE MECHANICS FOR THE INVESTIGATION OF MULTIBODY SYSTEMS WITH FRICTION
    KLEPP, HJ
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (09): : 397 - 407
  • [2] EFFICIENT MODELING OF CONSTRAINED MULTIBODY SYSTEMS FOR APPLICATION WITH PARALLEL COMPUTING
    ANDERSON, KS
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T871 - T874
  • [3] Randomized parallel simulation of constrained multibody systems for VR/haptic applications
    Bicchi, A
    Pallottino, L
    Bray, M
    Perdomi, P
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2001, : 2319 - 2324
  • [4] Hamel's equations and geometric mechanics of constrained and floating multibody and space systems
    Mueller, Andreas
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2273):
  • [5] DYNAMICS OF CONSTRAINED MULTIBODY SYSTEMS
    KAMMAN, JW
    HUSTON, RL
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1984, 51 (04): : 899 - 903
  • [6] An Iterative Algorithm For Constrained MPC With Stability Of Bilinear Systems
    Fontes, Adhemar B.
    Dorea, Carlos E. T.
    Garcia, Marcio R. da S.
    [J]. 2008 MEDITERRANEAN CONFERENCE ON CONTROL AUTOMATION, VOLS 1-4, 2008, : 483 - 488
  • [7] Contact Mechanics in Multibody Systems
    Thomas Klisch
    [J]. Multibody System Dynamics, 1998, 2 : 335 - 354
  • [8] Contact Mechanics in Multibody Systems
    Klisch, Thomas
    [J]. MULTIBODY SYSTEM DYNAMICS, 1998, 2 (04) : 335 - 354
  • [9] Contact mechanics in multibody systems
    Klisch, T
    [J]. MECHANISM AND MACHINE THEORY, 1999, 34 (05) : 665 - 675
  • [10] Contact mechanics in multibody systems
    Ger. Aerosp. Research Establishment, Inst. for Robotics and Syst. Dynam., Post Box 11 16, D-82230 Wessling, Germany
    [J]. Mech Mach Theory, 5 (665-675):