Memory-Augmented Model-Driven Network for Pansharpening

被引:5
|
作者
Yan, Keyu [1 ,2 ]
Zhou, Man [1 ,2 ]
Zhang, Li [1 ,2 ]
Xie, Chengjun [1 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Hefei, Peoples R China
[2] Univ Sci & Technol China, Hefei, Peoples R China
来源
关键词
Pan-sharpening; Maximal a posterior estimation model; Deep unfolding method; Memory mechanism; IMAGE FUSION;
D O I
10.1007/978-3-031-19800-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel memory-augmented model-driven deep unfolding network for pan-sharpening. First, we devise the maximal a posterior estimation (MAP) model with two well-designed priors on the latent multi-spectral (MS) image, i.e., global and local implicit priors to explore the intrinsic knowledge across the modalities of MS and panchromatic (PAN) images. Second, we design an effective alternating minimization algorithm to solve this MAP model, and then unfold the proposed algorithm into a deep network, where each stage corresponds to one iteration. Third, to facilitate the signal flow across adjacent iterations, the persistent memory mechanism is introduced to augment the information representation by exploiting the Long short-term memory unit in the image and feature spaces. With this method, both the interpretability and representation ability of the deep network are improved. Extensive experiments demonstrate the superiority of our method to the existing state-of-the-art approaches. The source code is released at https://github.com/Keyu- Yan/MMNet.
引用
收藏
页码:306 / 322
页数:17
相关论文
共 50 条
  • [1] Memory-Augmented Theory of Mind Network
    Dung Nguyen
    Phuoc Nguyen
    Hung Le
    Kien Do
    Venkatesh, Svetha
    Truyen Tran
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11630 - 11637
  • [2] Memory-Augmented Attention Network for Sequential Recommendation
    Hu, Cheng
    He, Peijian
    Sha, Chaofeng
    Niu, Junyu
    [J]. WEB INFORMATION SYSTEMS ENGINEERING - WISE 2019, 2019, 11881 : 228 - 242
  • [3] Memory-Augmented Deep Unfolding Network for Compressive Sensing
    Song, Jiechong
    Chen, Bin
    Zhang, Jian
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4249 - 4258
  • [4] A Cognitive Memory-Augmented Network for Visual Anomaly Detection
    Wang, Tian
    Xu, Xing
    Shen, Fumin
    Yang, Yang
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 8 (07) : 1296 - 1307
  • [5] A Memory-Augmented Neural Model for Automated Grading
    Zhao, Siyuan
    Zhang, Yaqiong
    Xiong, Xiaolu
    Botelho, Anthony
    Heffernan, Neil
    [J]. PROCEEDINGS OF THE FOURTH (2017) ACM CONFERENCE ON LEARNING @ SCALE (L@S'17), 2017, : 189 - 192
  • [6] A Cognitive Memory-Augmented Network for Visual Anomaly Detection
    Tian Wang
    Xing Xu
    Fumin Shen
    Yang Yang
    [J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8 (07) : 1296 - 1307
  • [7] Echo Memory-Augmented Network for time series classification
    Ma, Qianli
    Zheng, Zhenjing
    Zhuang, Wanqing
    Chen, Enhuan
    Wei, Jia
    Wang, Jiabing
    [J]. NEURAL NETWORKS, 2021, 133 : 177 - 192
  • [8] Neuroevolution of a Modular Memory-Augmented Neural Network for Deep Memory Problems
    Khadka, Shauharda
    Chung, Jen Jen
    Tumer, Kagan
    [J]. EVOLUTIONARY COMPUTATION, 2019, 27 (04) : 639 - 664
  • [9] An In-Memory Computing SRAM Macro for Memory-Augmented Neural Network
    Kim, Sunghoon
    Lee, Wonjae
    Kim, Sundo
    Park, Sungjin
    Jeon, Dongsuk
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (03) : 1687 - 1691
  • [10] Trajectory Prediction Technology Integrating Complex Network and Memory-Augmented Network
    Zhao, Gaoshi
    Chen, Long
    Cai, Yingfeng
    Lian, Yubo
    Wang, Hai
    Liu, Qingchao
    Teng, Chenglong
    [J]. Qiche Gongcheng/Automotive Engineering, 2023, 45 (09): : 1608 - 1616