Bond percolation critical probability bounds for three Archimedean lattices

被引:13
|
作者
Wierman, JC [1 ]
机构
[1] Johns Hopkins Univ, Dept Math Sci, Baltimore, MD 21218 USA
关键词
bond percolation; critical probability; Archimedian lattice; stochastic ordering; partition lattice;
D O I
10.1002/rsa.10029
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Rigorous bounds for the bond percolation critical probability are determined for three Archimedean lattices: .7385 < p(c)((3, 12(2)) bond) < .7449, .6430 < p(c)((4, 6, 12) bond) <.7376, .6281 < p(c)((4, 8(2)) bond) < .7201. Consequently, the bond percolation critical probability of the (3, 12(2)) lattice is strictly larger than those of the other ten Archimedean lattices. Thus, the (3, 12(2)) bond percolation critical probability is possibly the largest of any vertex-transitive graph with bond percolation critical probability that is strictly less than one. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:507 / 518
页数:12
相关论文
共 50 条